ﻻ يوجد ملخص باللغة العربية
In this note the notions of trace compatible operators and infinitesimal spectral flow are introduced. We define the spectral shift function as the integral of infinitesimal spectral flow. It is proved that the spectral shift function thus defined is absolutely continuous and Kreins formula is established. Some examples of trace compatible affine spaces of operators are given.
For a commuting $d$- tuple of operators $boldsymbol T$ defined on a complex separable Hilbert space $mathcal H$, let $big [ !!big [ boldsymbol T^*, boldsymbol T big ]!!big ]$ be the $dtimes d$ block operator $big (!!big (big [ T_j^* , T_ibig ]big )!!
Let $A$ be a normal operator in a Hilbert space $mathcal{H}$, and let $mathcal{G} subset mathcal{H}$ be a countable set of vectors. We investigate the relations between $A$, $mathcal{G}$ , and $L$ that makes the system of iterations ${A^ng: gin mathc
This paper extends Kreins spectral shift function theory to the setting of semifinite spectral triples. We define the spectral shift function under these hypotheses via Birman-Solomyak spectral averaging formula and show that it computes spectral flow.
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
Let $H_V=-Delta +V$ be a Schrodinger operator on an arbitrary open set $Omega$ of $mathbb R^d$, where $d geq 3$, and $Delta$ is the Dirichlet Laplacian and the potential $V$ belongs to the Kato class on $Omega$. The purpose of this paper is to show $