ﻻ يوجد ملخص باللغة العربية
In [A polynomial invariant of graphs on orientable surfaces, Proc. Lond. Math. Soc., III Ser. 83, No. 3, 513-531 (2001)] and [A polynomial of graphs on surfaces, Math. Ann. 323, 81-96 (2002)], Bollobas and Riordan generalized the classical Tutte polynomial to graphs cellularly embedded in surfaces, i.e. ribbon graphs, thus encoding topological information not captured by the classical Tutte polynomial. We provide a `recipe theorem for their new topological Tutte polynomial, R(G). We then relate R(G) to the generalized transition polynomial Q(G) via a medial graph construction, thus extending the relation between the classical Tutte polynomial and the Martin, or circuit partition, polynomial to ribbon graphs. We use this relation to prove a duality property for R(G) that holds for both oriented and unoriented ribbon graphs. We conclude by placing the results of Chumutov and Pak [The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs, Moscow Mathematical Journal 7(3) (2007) 409-418] for virtual links in the context of the relation between R(G) and Q(R).
We give a bound on the spectral radius of a graph implying a quantitative version of the Erdos-Stone theorem.
Identities obtained by elementary finite Fourier analysis are used to derive a variety of evaluations of the Tutte polynomial of a graph G at certain points (a,b) where (a-1)(b-1) equals 2 or 4. These evaluations are expressed in terms of eulerian su
We find new properties of the topological transition polynomial of embedded graphs, $Q(G)$. We use these properties to explain the striking similarities between certain evaluations of Bollobas and Riordans ribbon graph polynomial, $R(G)$, and the top
In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solut
This is a survey on the exact complexity of computing the Tutte polynomial. It is the longer 2017 version of Chapter 25 of the CRC Handbook on the Tutte polynomial and related topics, edited by J. Ellis-Monaghan and I. Moffatt, which is due to appear