ترغب بنشر مسار تعليمي؟ اضغط هنا

A recipe theorem for the topological Tutte polynomial of Bollobas and Riordan

180   0   0.0 ( 0 )
 نشر من قبل Joanna Ellis-Monaghan
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In [A polynomial invariant of graphs on orientable surfaces, Proc. Lond. Math. Soc., III Ser. 83, No. 3, 513-531 (2001)] and [A polynomial of graphs on surfaces, Math. Ann. 323, 81-96 (2002)], Bollobas and Riordan generalized the classical Tutte polynomial to graphs cellularly embedded in surfaces, i.e. ribbon graphs, thus encoding topological information not captured by the classical Tutte polynomial. We provide a `recipe theorem for their new topological Tutte polynomial, R(G). We then relate R(G) to the generalized transition polynomial Q(G) via a medial graph construction, thus extending the relation between the classical Tutte polynomial and the Martin, or circuit partition, polynomial to ribbon graphs. We use this relation to prove a duality property for R(G) that holds for both oriented and unoriented ribbon graphs. We conclude by placing the results of Chumutov and Pak [The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs, Moscow Mathematical Journal 7(3) (2007) 409-418] for virtual links in the context of the relation between R(G) and Q(R).



قيم البحث

اقرأ أيضاً

171 - Vladimir Nikiforov 2007
We give a bound on the spectral radius of a graph implying a quantitative version of the Erdos-Stone theorem.
137 - Andrew J. Goodall 2007
Identities obtained by elementary finite Fourier analysis are used to derive a variety of evaluations of the Tutte polynomial of a graph G at certain points (a,b) where (a-1)(b-1) equals 2 or 4. These evaluations are expressed in terms of eulerian su bgraphs of G and the size of subgraphs modulo 2,3,4 or 6. In particular, a graph is found to have a nowhere-zero 4-flow if and only if there is a correlation between the event that three subgraphs A,B,C chosen uniformly at random have pairwise eulerian symmetric differences and the event that the integer part of (|A| + |B| + |C|) / 3 is even. Some further evaluations of the Tutte polynomial at points (a,b) where (a-1)(b-1) = 3 are also given that illustrate the unifying power of the methods used. The connection between results of Matiyasevich, Alon and Tarsi and Onn is highlighted by indicating how they may all be derived by the techniques adopted in this paper.
We find new properties of the topological transition polynomial of embedded graphs, $Q(G)$. We use these properties to explain the striking similarities between certain evaluations of Bollobas and Riordans ribbon graph polynomial, $R(G)$, and the top ological Penrose polynomial, $P(G)$. The general framework provided by $Q(G)$ also leads to several other combinatorial interpretations these polynomials. In particular, we express $P(G)$, $R(G)$, and the Tutte polynomial, $T(G)$, as sums of chromatic polynomials of graphs derived from $G$; show that these polynomials count $k$-valuations of medial graphs; show that $R(G)$ counts edge 3-colourings; and reformulate the Four Colour Theorem in terms of $R(G)$. We conclude with a reduction formula for the transition polynomial of the tensor product of two embedded graphs, showing that it leads to additional relations among these polynomials and to further combinatorial interpretations of $P(G)$ and $R(G)$.
In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solut ions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.
This is a survey on the exact complexity of computing the Tutte polynomial. It is the longer 2017 version of Chapter 25 of the CRC Handbook on the Tutte polynomial and related topics, edited by J. Ellis-Monaghan and I. Moffatt, which is due to appear in the first quarter of 2020. In the version to be published in the Handbook the Sections 5 and 6 are shortened and made into a single section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا