ترغب بنشر مسار تعليمي؟ اضغط هنا

Parity, eulerian subgraphs and the Tutte polynomial

144   0   0.0 ( 0 )
 نشر من قبل Andrew Goodall
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Andrew J. Goodall




اسأل ChatGPT حول البحث

Identities obtained by elementary finite Fourier analysis are used to derive a variety of evaluations of the Tutte polynomial of a graph G at certain points (a,b) where (a-1)(b-1) equals 2 or 4. These evaluations are expressed in terms of eulerian subgraphs of G and the size of subgraphs modulo 2,3,4 or 6. In particular, a graph is found to have a nowhere-zero 4-flow if and only if there is a correlation between the event that three subgraphs A,B,C chosen uniformly at random have pairwise eulerian symmetric differences and the event that the integer part of (|A| + |B| + |C|) / 3 is even. Some further evaluations of the Tutte polynomial at points (a,b) where (a-1)(b-1) = 3 are also given that illustrate the unifying power of the methods used. The connection between results of Matiyasevich, Alon and Tarsi and Onn is highlighted by indicating how they may all be derived by the techniques adopted in this paper.



قيم البحث

اقرأ أيضاً

We prove that the Eulerian polynomial satisfies certain polynomial congruences. Furthermore, these congruences characterize the Eulerian polynomial.
In [A polynomial invariant of graphs on orientable surfaces, Proc. Lond. Math. Soc., III Ser. 83, No. 3, 513-531 (2001)] and [A polynomial of graphs on surfaces, Math. Ann. 323, 81-96 (2002)], Bollobas and Riordan generalized the classical Tutte poly nomial to graphs cellularly embedded in surfaces, i.e. ribbon graphs, thus encoding topological information not captured by the classical Tutte polynomial. We provide a `recipe theorem for their new topological Tutte polynomial, R(G). We then relate R(G) to the generalized transition polynomial Q(G) via a medial graph construction, thus extending the relation between the classical Tutte polynomial and the Martin, or circuit partition, polynomial to ribbon graphs. We use this relation to prove a duality property for R(G) that holds for both oriented and unoriented ribbon graphs. We conclude by placing the results of Chumutov and Pak [The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs, Moscow Mathematical Journal 7(3) (2007) 409-418] for virtual links in the context of the relation between R(G) and Q(R).
In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solut ions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.
This is a survey on the exact complexity of computing the Tutte polynomial. It is the longer 2017 version of Chapter 25 of the CRC Handbook on the Tutte polynomial and related topics, edited by J. Ellis-Monaghan and I. Moffatt, which is due to appear in the first quarter of 2020. In the version to be published in the Handbook the Sections 5 and 6 are shortened and made into a single section.
95 - Shi-Mei Ma , Jun Ma , Jean Yeh 2020
In this paper, we characterize a duality relation between Eulerian recurrences and Eulerian recurrence systems, which generalizes and unifies Hermite-Biehler decompositions of several enumerative polynomials, including flag descent polynomials for hy peroctahedral group, flag ascent-plateau polynomials for Stirling permutations, up-down run polynomials for symmetric group and alternating run polynomials for hyperoctahedral group. As applications, we derive some properties of associated enumerative polynomials. In particular, we find that both the ascent-plateau polynomials and left ascent-plateau polynomials for Stirling permutations are alternatingly increasing, and so they are unimodal with modes in the middle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا