ترغب بنشر مسار تعليمي؟ اضغط هنا

Noetherian loop spaces

194   0   0.0 ( 0 )
 نشر من قبل Jerome Scherer
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The class of loop spaces whose mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as the infinite complex projective space and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space BX of such an object and prove it is as small as expected, that is, comparable to that of BCP^infty. We also show that BX differs basically from the classifying space of a p-compact group in a single homotopy group. This applies in particular to 4-connected covers of classifying spaces of Lie groups and sheds new light on how the cohomology of such an object looks like.



قيم البحث

اقرأ أيضاً

Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? This note provides, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens-Venkov Theorem. W e consider the cohomology of a space with coefficients in a module, and we compare Noetherianity over the field with p elements, with Noetherianity over the p-adic integers, in the case when the fundamental group is a finite p-group.
Let $X$ be a topological space with Noetherian mod $p$ cohomology and let $C^*(X;mathbb{F}_p)$ be the commutative ring spectrum of $mathbb{F}_p$-valued cochains on $X$. The goal of this paper is to exhibit conditions under which the category of modul e spectra on $C^*(X;mathbb{F}_p)$ is stratified in the sense of Benson, Iyengar, Krause, providing a classification of all its localizing subcategories. We establish stratification in this sense for classifying spaces of a large class of topological groups including Kac--Moody groups as well as whenever $X$ admits an $H$-space structure. More generally, using Lannes theory we prove that stratification for $X$ is equivalent to a condition that generalizes Chouinards theorem for finite groups. In particular, this relates the generalized telescope conjecture in this setting to a question in unstable homotopy theory.
The theory of p-local compact groups, developed in an earlier paper by the same authors, is designed to give a unified framework in which to study the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups, as well a s some other families of a similar nature. It also includes, and in many aspects generalizes, the earlier theory of p-local finite groups. In this paper we show that the theory extends to include classifying spaces of finite loop spaces. Our main theorem is in fact more general and states that in a fibration whose base spaces if the classifying space of a finite group, and whose fibre is the classifying space of a p-local compact group, the total space is, up to p-completion the classifying space of a p-local compact group.
We study the homology of free loop spaces via techniques arising from the theory of topological coHochschild homology (coTHH). Topological coHochschild homology is a topological analogue of the classical theory of coHochschild homology for coalgebras . We produce new spectrum-level structure on coTHH of suspension spectra as well as new algebraic structure in the coBokstedt spectral sequence for computing coTHH. These new techniques allow us to compute the homology of free loop spaces in several new cases, extending known calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا