ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical analysis of the overnight and daytime return

87   0   0.0 ( 0 )
 نشر من قبل Fengzhong Wang
 تاريخ النشر 2009
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the two components of the total daily return (close-to-close), the overnight return (close-to-open) and the daytime return (open-to-close), as well as the corresponding volatilities of the 2215 NYSE stocks from 1988 to 2007. The tail distribution of the volatility, the long-term memory in the sequence, and the cross-correlation between different returns are analyzed. Our results suggest that: (i) The two component returns and volatilities have similar features as that of the total return and volatility. The tail distribution follows a power law for all volatilities, and long-term correlations exist in the volatility sequences but not in the return sequences. (ii) The daytime return contributes more to the total return. Both the tail distribution and the long-term memory of the daytime volatility are more similar to that of the total volatility, compared to the overnight records. In addition, the cross-correlation between the daytime return and the total return is also stronger. (iii) The two component returns tend to be anti-correlated. Moreover, we find that the cross-correlations between the three different returns (total, overnight, and daytime) are quite stable over the entire 20-year period.

قيم البحث

اقرأ أيضاً

We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold $q$ for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approxim ated by a scaling function that depends only on the ratio between the return interval $tau$ and its mean $<tau>$. We also find memory effects such that a large (or small) return interval follows a large (or small) interval by investigating the conditional distribution and mean return interval. The results are similar to previous studies of other markets and indicate that similar statistical features appear in different financial markets. We also compare our results between the period before and after the big crash at the end of 1989. We find that scaling and memory effects of the return intervals show similar features although the statistical properties of the returns are different.
We study the volatility time series of 1137 most traded stocks in the US stock markets for the two-year period 2001-02 and analyze their return intervals $tau$, which are time intervals between volatilities above a given threshold $q$. We explore the probability density function of $tau$, $P_q(tau)$, assuming a stretched exponential function, $P_q(tau) sim e^{-tau^gamma}$. We find that the exponent $gamma$ depends on the threshold in the range between $q=1$ and 6 standard deviations of the volatility. This finding supports the multiscaling nature of the return interval distribution. To better understand the multiscaling origin, we study how $gamma$ depends on four essential factors, capitalization, risk, number of trades and return. We show that $gamma$ depends on the capitalization, risk and return but almost does not depend on the number of trades. This suggests that $gamma$ relates to the portfolio selection but not on the market activity. To further characterize the multiscaling of individual stocks, we fit the moments of $tau$, $mu_m equiv <(tau/<tau>)^m>^{1/m}$, in the range of $10 < <tau> le 100$ by a power-law, $mu_m sim <tau>^delta$. The exponent $delta$ is found also to depend on the capitalization, risk and return but not on the number of trades, and its tendency is opposite to that of $gamma$. Moreover, we show that $delta$ decreases with $gamma$ approximately by a linear relation. The return intervals demonstrate the temporal structure of volatilities and our findings suggest that their multiscaling features may be helpful for portfolio optimization.
By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange C omposite Index (SZCI). The characteristics of the corresponding multifractal spectra are defined as a measurement of market volatility. It is found that there is a statistically significant relationship between the stock index returns and the spectral characteristics, which can be applied to forecast the future market return. The in-sample and out-of-sample tests on the return predictability of multifractal characteristics indicate the spectral width $Delta {alpha}$ is a significant and positive excess return predictor. Our results shed new lights on the application of multifractal nature in asset pricing.
Bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect an d the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is lack of long-range memory, while the spread volatility is long-range time correlated. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Differently from the spread return, the spread volatility exhibits a weak multifractal nature.
The distribution of recurrence times or return intervals between extreme events is important to characterize and understand the behavior of physical systems and phenomena in many disciplines. It is well known that many physical processes in nature an d society display long range correlations. Hence, in the last few years, considerable research effort has been directed towards studying the distribution of return intervals for long range correlated time series. Based on numerical simulations, it was shown that the return interval distributions are of stretched exponential type. In this paper, we obtain an analytical expression for the distribution of return intervals in long range correlated time series which holds good when the average return intervals are large. We show that the distribution is actually a product of power law and a stretched exponential form. We also discuss the regimes of validity and perform detailed studies on how the return interval distribution depends on the threshold used to define extreme events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا