ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Bid-ask Spread Return and Volatility of the Chinese Stock Market

438   0   0.0 ( 0 )
 نشر من قبل Tian Qiu
 تاريخ النشر 2011
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect and the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is lack of long-range memory, while the spread volatility is long-range time correlated. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Differently from the spread return, the spread volatility exhibits a weak multifractal nature.



قيم البحث

اقرأ أيضاً

313 - Tian Qiu 2008
We investigate the probability distribution of the volatility return intervals $tau$ for the Chinese stock market. We rescale both the probability distribution $P_{q}(tau)$ and the volatility return intervals $tau$ as $P_{q}(tau)=1/bar{tau} f(tau/bar {tau})$ to obtain a uniform scaling curve for different threshold value $q$. The scaling curve can be well fitted by the stretched exponential function $f(x) sim e^{-alpha x^{gamma}}$, which suggests memory exists in $tau$. To demonstrate the memory effect, we investigate the conditional probability distribution $P_{q} (tau|tau_{0})$, the mean conditional interval $<tau|tau_{0}>$ and the cumulative probability distribution of the cluster size of $tau$. The results show clear clustering effect. We further investigate the persistence probability distribution $P_{pm}(t)$ and find that $P_{-}(t)$ decays by a power law with the exponent far different from the value 0.5 for the random walk, which further confirms long memory exists in $tau$. The scaling and long memory effect of $tau$ for the Chinese stock market are similar to those obtained from the United States and the Japanese financial markets.
The distribution of the return intervals $tau$ between volatilities above a threshold $q$ for financial records has been approximated by a scaling behavior. To explore how accurate is the scaling and therefore understand the underlined non-linear mec hanism, we investigate intraday datasets of 500 stocks which consist of the Standard & Poors 500 index. We show that the cumulative distribution of return intervals has systematic deviations from scaling. We support this finding by studying the m-th moment $mu_m equiv <(tau/<tau>)^m>^{1/m}$, which show a certain trend with the mean interval $<tau>$. We generate surrogate records using the Schreiber method, and find that their cumulative distributions almost collapse to a single curve and moments are almost constant for most range of $<tau>$. Those substantial differences suggest that non-linear correlations in the original volatility sequence account for the deviations from a single scaling law. We also find that the original and surrogate records exhibit slight tendencies for short and long $<tau>$, due to the discreteness and finite size effects of the records respectively. To avoid as possible those effects for testing the multiscaling behavior, we investigate the moments in the range $10<<tau>leq100$, and find the exponent $alpha$ from the power law fitting $mu_msim<tau>^alpha$ has a narrow distribution around $alpha eq0$ which depend on m for the 500 stocks. The distribution of $alpha$ for the surrogate records are very narrow and centered around $alpha=0$. This suggests that the return interval distribution exhibit multiscaling behavior due to the non-linear correlations in the original volatility.
One of the major issues studied in finance that has always intrigued, both scholars and practitioners, and to which no unified theory has yet been discovered, is the reason why prices move over time. Since there are several well-known traditional tec hniques in the literature to measure stock market volatility, a central point in this debate that constitutes the actual scope of this paper is to compare this common approach in which we discuss such popular techniques as the standard deviation and an innovative methodology based on Econophysics. In our study, we use the concept of Tsallis entropy to capture the nature of volatility. More precisely, what we want to find out is if Tsallis entropy is able to detect volatility in stock market indexes and to compare its values with the ones obtained from the standard deviation. Also, we shall mention that one of the advantages of this new methodology is its ability to capture nonlinear dynamics. For our purpose, we shall basically focus on the behaviour of stock market indexes and consider the CAC 40, MIB 30, NIKKEI 225, PSI 20, IBEX 35, FTSE 100 and SP 500 for a comparative analysis between the approaches mentioned above.
We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold $q$ for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approxim ated by a scaling function that depends only on the ratio between the return interval $tau$ and its mean $<tau>$. We also find memory effects such that a large (or small) return interval follows a large (or small) interval by investigating the conditional distribution and mean return interval. The results are similar to previous studies of other markets and indicate that similar statistical features appear in different financial markets. We also compare our results between the period before and after the big crash at the end of 1989. We find that scaling and memory effects of the return intervals show similar features although the statistical properties of the returns are different.
In informationally efficient financial markets, option prices and this implied volatility should immediately be adjusted to new information that arrives along with a jump in underlyings return, whereas gradual changes in implied volatility would indi cate market inefficiency. Using minute-by-minute data on S&P 500 index options, we provide evidence regarding delayed and gradual movements in implied volatility after the arrival of return jumps. These movements are directed and persistent, especially in the case of negative return jumps. Our results are significant when the implied volatilities are extracted from at-the-money options and out-of-the-money puts, while the implied volatility obtained from out-of-the-money calls converges to its new level immediately rather than gradually. Thus, our analysis reveals that the implied volatility smile is adjusted to jumps in underlyings return asymmetrically. Finally, it would be possible to have statistical arbitrage in zero-transaction-cost option markets, but under actual option price spreads, our results do not imply abnormal option returns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا