ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternative High-z Cosmic Tracers and the Dark Energy Equation of State

438   0   0.0 ( 0 )
 نشر من قبل Manolis Plionis Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to use alternative cosmic tracers to measure the dark energy equation of state and the matter content of the Universe [w(z) & Omega_m]. Our proposed method consists of two components: (a) tracing the Hubble relation using HII-like starburst galaxies, as an alternative to SNIa, which can be detected up to very large redshifts, z~4, and (b) measuring the clustering pattern of X-ray selected AGN at a median redshift of ~1. Each component of the method can in itself provide interesting constraints on the cosmological parameters, especially under our anticipation that we will reduce the corresponding random and systematic errors significantly. However, by joining their likelihood functions we will be able to put stringent cosmological constraints and break the known degeneracies between the dark energy equation of state (whether it is constant or variable) and the matter content of the universe and provide a powerful and alternative rute to measure the contribution to the global dynamics, and the equation of state, of dark energy. A preliminary joint analysis of X-ray selected AGN (based on a small XMM survey) and the currently largest SNIa sample (Kowalski et al 2008), provides: Omega_m=0.28^{+0.02}_{-0.04} and w=-1.0 +-0.1.

قيم البحث

اقرأ أيضاً

The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a non-trivial topology will generate pairs of correlated circl es of temperature fluctuations in the anisotropies maps of the cosmic microwave background (CMB), the so-called circles-in-the-sky. In this way, a detectable non-trivial spatial topology may be seen as an observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no assumptions on the cosmological dark energy (DE) equation of state (EOS) parameters. We show that the knowledge of the spatial topology through the circles-in-the-sky offers an effective way of reducing the degeneracies in the DE EOS parameters. We concretely illustrate the topological role by assuming, as an exanple, a Poincar{e} dodecahedral space topology and reanalyzing the constraints on the parameters of a specific EOS which arise from the supernovae type Ia, baryon acoustic oscillations and the CMB plus the statistical topological contribution.
Several independent cosmological data, collected within the last twenty years, revealed the accelerated expansion rate of the Universe, usually assumed to be driven by the so called dark energy, which, according to recent estimates, provides now abou t 70 % of the total amount of matter-energy in the Universe. The nature of dark energy is yet unknown. Several models of dark energy have been proposed: a non zero cosmological constant, a potential energy of some self interacting scalar field, effects related to the non homogeneous distribution of matter, or effects due to alternative theories of gravity. Recently, it turned out that the standard flat LambdaCDM is disfavored (at 4 sigma) when confronted with a high redshift Hubble diagram, consisting of supernovae of type Ia (SNIa), quasars (QSOs) and gamma ray-bursts (GRBs) ([1-3]). Here we use the same data to investigate if this tension is confirmed, using a different approach: actually in [1-3], the deviation between the best fit model and the LambdaCDM model was noticed by comparing cosmological parameters derived from cosmographic expansions of their theoretical predictions and observed high redshift Hubble diagram. In this paper we use a substantially different approach, based on a specific parametrization of the redshift dependent equation of state (EOS) of dark energy component w(z). Our statistical analysis is aimed to estimate the parameters characterizing the dark energy EOS: our results indicate (at > 3 sigma level) an evolving dark energy EOS, while the cosmological constant has a constant EOS, wLambda =-1. This result not only confirms the tension previously detected, but shows that it is not an artifact of cosmographic expansions.
We combine recent measurements of Cosmic Microwave Background Anisotropies, Supernovae luminosity distances and Baryonic Acoustic Oscillations to derive constraints on the dark energy equation of state w in the redshift range 0<z<2, using a principal components approach. We find no significant deviations from the expectations of a cosmological constant. However, combining the datasets we find slight indication for w<-1 at low redshift, thus highlighting how these datasets prefer a non-constant w. Nevertheless the cosmological constant is still in agreement with these observations, while we find that some classes of alternative models may be in tension with the inferred w(z) behaviour.
We investigate the possibilities of reconstructing the cosmic equation of state (EoS) for high redshift. In order to obtain general results, we use two model-independent approaches. The first reconstructs the EoS using comoving distance and the secon d makes use of the Hubble parameter data. To implement the first method, we use a recent set of Gamma-Ray Bursts (GRBs) measures. To implement the second method, we generate simulated data using the Sandage-Loeb ($SL$) effect; for the fiducial model, we use the $Lambda CDM$ model. In both cases, the statistical analysis is conducted through the Gaussian processes (non-parametric). In general, we demonstrate that this methodology for reconstructing the EoS using a non-parametric method plus a model-independent approach works appropriately due to the feasibility of calculation and the ease of introducing a priori information ($H_ {0}$ and $Omega_{m0}$). In the near future, following this methodology with a higher number of high quality data will help obtain strong restrictions for the EoS.
The detection of extremely massive clusters at $z>1$ such as SPT-CL J0546-5345, SPT-CL J2106-5844, and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard LCDM$;$cosmology. In fact,assuming Gaussian initial conditions , the theoretical expectation of detecting such objects is as low as $leq 1%$. In this textit{Letter} we discuss the probability of the existence of such objects in the light of the Vector Dark Energy (VDE) paradigm, showing by means of a series of $N$-body simulations that chances of detection are substantially enhanced in this non-standard framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا