ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Phenomenology of Scalar Sequestering

71   0   0.0 ( 0 )
 نشر من قبل Hyung Do Kim
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The light Higgs mass in the MSSM is highly constrained and is predicted to be close to M_Z which causes a tension between the LEP II Higgs mass bound 114 GeV and the natural electroweak symmetry breaking in the MSSM. The usual way to increase the light CP even Higgs mass was to increase the quartic coupling of the up type Higgs. We point out that the light Higgs mass can be increased by reducing the off-diagonal term in the mass matrix when tan beta is moderate, which is about 5 to 10. As a result no mixing and/or a Higgs mixing angle of the opposite sign arises and the branching ratio of Higgs decay is drastically changed. This is possible in scalar sequestering scenario in which mu parameter can be large independently of the electroweak symmetry breaking. We also discuss the same effect in the BMSSM.

قيم البحث

اقرأ أيضاً

We propose a 2-Higgs doublet model where the symmetry is extended by $S_{3}otimes Z_{3}otimes Z_{3}^{prime }otimes Z_{14}$ and the field content is enlarged by extra $SU(2)_{L}$ singlet scalar fields. $S_3$ makes the model predictive and leads to via ble fermion masses and mixing. The observed hierarchy of the quark masses arises from the $Z_{3}^{prime }$ and $Z_{14}$ symmetries. The light neutrino masses are generated through a type I seesaw mechanism with two heavy Majorana neutrinos. In the lepton sector we obtain mixing angles that are nearly tri-bi-maximal, in an excellent agreement with the observed lepton parameters. The vacuum expectation values required for the model are naturally obtained from the scalar potential, and we analyze the scalar sector properties further constraining the model through the $gamma gamma$ decay channel and the $T$ and $S$ parameters.
119 - Howard E. Haber 1997
The search for the weakly-coupled Higgs sector at future colliders consists of three phases: discovery of a Higgs candidate, verification of the Higgs interpretation of the signal, and precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics.
We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the models parameter space with adapted numerical techniques, we contrast the scenarios low energy limit with existing SM and col lider search constraints. We discuss potential modifications of di-Higgs phenomenology at hadron colliders as sensitive probes of the gauge-like character of the Higgs self-interactions and find that for phenomenologically viable parameter choices modifications of the order of 20% compared to the SM cross section can be expected. While these modifications are challenging to observe at the LHC, a future 100 TeV hadron collider might be able to constrain the scenario through more precise di-Higgs measurements. We point out alternative signatures that can be employed to constrain this model in the near future.
We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV Higgs boson, which receives corrections from the propagating charged scalars alongside one-loop EFT operator insertions and demonstrate that the interplay of $Hto gammagamma$ and $Hto Zgamma$ decays can be used to clarify the additional states phenomenology in case a discovery is made in the future. In parallel, EFT interactions of the charged Higgs can lead to a decreased sensitivity to the virtual presence of charged Higgs states, which can significantly weaken the constraints that are naively expected from the precisely measured $Hto gammagamma$ branching ratio. Again $Hto Zgamma$ measurements provide complementary sensitivity that can be exploited in the future.
56 - Stephen P. Martin 2017
In supersymmetric models with scalar sequestering, superconformal strong dynamics in the hidden sector suppresses the low-energy couplings of mass dimension two, compared to the squares of the dimension one parameters. Taking into account restriction s on the anomalous dimensions in superconformal theories, I point out that the interplay between the hidden and visible sector renormalizations gives rise to quasi-fixed point running for the supersymmetric Standard Model squared mass parameters, rather than driving them to 0. The extent to which this dynamics can ameliorate the little hierarchy problem in supersymmetry is studied. Models of this type in which the gaugino masses do not unify are arguably more natural, and are certainly more likely to be accessible, eventually, to the Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا