ﻻ يوجد ملخص باللغة العربية
The search for the weakly-coupled Higgs sector at future colliders consists of three phases: discovery of a Higgs candidate, verification of the Higgs interpretation of the signal, and precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics.
The light Higgs mass in the MSSM is highly constrained and is predicted to be close to M_Z which causes a tension between the LEP II Higgs mass bound 114 GeV and the natural electroweak symmetry breaking in the MSSM. The usual way to increase the lig
We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV
We study extensions of the standard model by one generation of vector-like leptons with non-standard hypercharges, which allow for a sizable modification of the h -> gamma gamma decay rate for new lepton masses in the 300 GeV - 1 TeV range. We analyz
We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the models parameter space with adapted numerical techniques, we contrast the scenarios low energy limit with existing SM and col
We summarize the most significant aspects in the study of transverse spin phenomena over the last few decades, focusing on Semi-Inclusive Deep Inelastic Scattering processes and hadronic production in $e^+e^-$ annihilations. The phenomenology of tran