ترغب بنشر مسار تعليمي؟ اضغط هنا

AMiBA: Broadband Heterodyne CMB Interferometry

165   0   0.0 ( 0 )
 نشر من قبل Keiichi Umetsu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ming-Tang Chen




اسأل ChatGPT حول البحث

The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first science results on the detection of galaxy clusters via the Sunyaev Zeldovich effect. The science objectives required small reflectors in order to sample large scale structures (20) while interferometry provided modest resolutions (2). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. MMIC technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operations since 2006, and we are in the process to expand the array from 7 to 13 elements.

قيم البحث

اقرأ أيضاً

339 - Chao-Te Li 2010
A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.
We propose a new broadband search strategy for ultralight axion dark matter that interacts with electromagnetism. An oscillating axion field induces transitions between two quasi-degenerate resonant modes of a superconducting cavity. In two broadband runs optimized for high and low masses, this setup can probe unexplored parameter space for axion-like particles covering fifteen orders of magnitude in mass, including astrophysically long-ranged fuzzy dark matter.
99 - Patrick M. Koch 2009
AMiBA is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components -- the support cone, universal joints, jack screws, and platform -- and outline the con trol system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 micron rms. This is negligible for optical pointing corrections, radio alignment and radio phase errors for the currently operational 7-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0.4 arcmin rms which meets our goal for the 7-element target specifications.
The Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) started scientific operation in early 2007. This work describes the optimization of the system performance for the measurements of the Sunyaev-Zeldovich effect for six massive galaxy clus ters at redshifts $0.09 - 0.32$. We achieved a point source sensitivity of $63pm 7$ mJy with the seven 0.6m dishes in 1 hour of on-source integration in 2-patch differencing observations. We measured and compensated for the delays between the antennas of our platform-mounted interferometer. Beam switching was used to cancel instrumental instabilities and ground pick up. Total power and phase stability were good on time scales of hours, and the system was shown to integrate down on equivalent timescales of 300 hours per baseline/correlation, or about 10 hours for the entire array. While the broadband correlator leads to good sensitivity, the small number of lags in the correlator resulted in poorly measured bandpass response. We corrected for this by using external calibrators (Jupiter and Saturn). Using Jupiter as the flux standard, we measured the disk brightness temperature of Saturn to be $149^{+5}_{-12}$ K.
Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To date, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 microns. Operation in m id-infrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا