ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavily Obscured AGN in Star-Forming Galaxies at z~2

184   0   0.0 ( 0 )
 نشر من قبل Ezequiel Treister
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.



قيم البحث

اقرأ أيضاً

172 - H. Chen , M. A. Garrett , S. Chi 2020
Submillimetre-selected galaxies (SMGs) at high redshift ($z$ $sim$ 2) are potential host galaxies of active galactic nuclei (AGN). If the local Universe is a good guide, $sim$ 50$%$ of the obscured AGN amongst the SMG population could be missed even in the deepest X-ray surveys. Radio observations are insensitive to obscuration; therefore, very long baseline interferometry (VLBI) can be used as a tool to identify AGN in obscured systems. A well-established upper limit to the brightness temperature of 10$^5$ K exists in star-forming systems, thus VLBI observations can distinguish AGN from star-forming systems via brightness temperature measurements. We present 1.6 GHz European VLBI Network (EVN) observations of four SMGs (with measured redshifts) to search for evidence of compact radio components associated with AGN cores. For two of the sources, e-MERLIN images are also presented. Out of the four SMGs observed, we detect one source, J123555.14, that has an integrated EVN flux density of 201 $pm$ 15.2 $mu$Jy, corresponding to a brightness temperature of 5.2 $pm$ 0.7 $times$ 10$^5$ K. We therefore identify that the radio emission from J123555.14 is associated with an AGN. We do not detect compact radio emission from a possible AGN in the remaining sources (J123600.10, J131225.73, and J163650.43). In the case of J131225.73, this is particularly surprising, and the data suggest that this may be an extended, jet-dominated AGN that is resolved by VLBI. Since the morphology of the faint radio source population is still largely unknown at these scales, it is possible that with a $sim$ 10 mas resolution, VLBI misses (or resolves) many radio AGN extended on kiloparsec scales.
We present the first results of the spectroscopy of distant, obscured AGN as obtained with the ultra-deep (~3.3 Ms) XMM-Newton survey in the Chandra Deep Field South (CDFS). One of the primary goals of the project is to characterize the X-ray spectra l properties of obscured and heavily obscured Compton-thick AGN over the range of redhifts and luminosities that are relevant in terms of their contribution to the X-ray background. The ultra-deep exposure, coupled with the XMM detectors spectral throughput, allowed us to accumulate good quality X-ray spectra for a large number of X-ray sources and, in particular, for heavily obscured AGN at cosmological redshifts. Specifically we present the X-ray spectral properties of two high-redshift - z= 1.53 and z=3.70 - sources. The XMM spectra of both are very hard, with a strong iron Kalpha line at a rest-frame energy of 6.4 keV. A reflection-dominated continuum provides the best description of the X-ray spectrum of the z=1.53 source, while the intrinsic continuum of the z=3.70 AGN is obscured by a large column N_H ~ 10^24 cm-2 of cold gas. Compton-thick absorption, or close to it, is unambiguously detected in both sources. Interestingly, these sources would not be selected as candidate Compton thick AGN by some multiwavelength selection criteria based on the mid-infrared to optical and X-ray to optical flux ratios.
106 - B. Luo , W.N. Brandt , Y.Q. Xue 2011
(abridged) We identify a numerically significant population of heavily obscured AGNs at z~0.5-1 in the Chandra Deep Field-South (CDF-S) and Extended Chandra Deep Field-South by selecting 242 X-ray undetected objects with infrared-based star formation rates (SFRs) substantially higher (a factor of 3.2 or more) than their SFRs determined from the UV after correcting for dust extinction. An X-ray stacking analysis of 23 candidates in the central CDF-S region using the 4 Ms Chandra data reveals a hard X-ray signal with an effective power-law photon index of Gamma=0.6_{-0.4}^{+0.3}, indicating a significant contribution from obscured AGNs. Based on Monte Carlo simulations, we conclude that 74+-25% of the selected galaxies host obscured AGNs, within which ~95% are heavily obscured and ~80% are Compton-thick (CT; NH>1.5x10^{24} cm^{-2}). The heavily obscured objects in our sample are of moderate intrinsic X-ray luminosity [ ~ (0.9-4)x10^{42} erg/s in the 2-10 keV band]. The space density of the CT AGNs is (1.6+-0.5)x10^{-4} Mpc^{-3}. The z~0.5-1 CT objects studied here are expected to contribute ~1% of the total XRB flux in the 10-30 keV band, and they account for ~5-15% of the emission in this energy band expected from all CT AGNs according to population-synthesis models. In the 6--8 keV band, the stacked signal of the 23 heavily obscured candidates accounts for <5% of the unresolved XRB flux, while the unresolved ~25% of the XRB in this band can probably be explained by a stacking analysis of the X-ray undetected optical galaxies in the CDF-S (a 2.5 sigma stacked signal). We discuss prospects to identify such heavily obscured objects using future hard X-ray observatories.
We present NuSTAR hard X-ray (3-79 keV) observations of three Type 2 quasars at z ~ 0.4-0.5, optically selected from the Sloan Digital Sky Survey (SDSS). Although the quasars show evidence for being heavily obscured Compton-thick systems on the basis of the 2-10 keV to [OIII] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N_H) are poorly known. In this analysis: (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N_H; (2) we further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution (SED) analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N_H gtrsim 5 x 10^23 cm^-2. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low energy (2-10 keV) and high energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N_H gtrsim 10^24 cm^-2). We find that for quasars at z ~ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.
We investigate the differences in the stellar population properties, the structure, and the environment between massive compact star-forming galaxies (cSFGs) with or without active galactic nucleus (AGN) at $2<z<3$ in the five 3D-HST/CANDELS fields. In a sample of 221 massive cSFGs, we constitute the most complete AGN census so far, identifying 66 AGNs by the X-ray detection, the mid-infrared color criterion, and/or the SED fitting, while the rest (155) are non-AGNs. Further dividing these cSFGs into two redshift bins, i.e., $2<z<2.5$ and $2.5 leq z<3$, we find that in each redshift bin the cSFGs with AGNs have similar distributions of the stellar mass, the specific star formation rate, and the ratio of $L_{rm IR}$ to $L_{rm UV}$ to those without AGNs. After having performed a two-dimensional surface brightness modeling for those cSFGs with X-ray-detected AGNs (37) to correct for the influence of the central point-like X-ray AGN on measuring the structural parameters of its host galaxy, we find that in each redshift bin the cSFGs with AGNs have comparable distributions of all concerned structural parameters, i.e., the Sersic index, the 20%-light radius, the Gini coefficient, and the concentration index, to those without AGNs. With a gradual consumption of available gas and dust, the structure of cSFGs, indicated by the above structural parameters, seem to be slightly more concentrated with decreasing redshift. At $2<z<3$, the similar environment between cSFGs with and without AGNs suggests that their AGN activities are potentially triggered by internal secular processes, such as gravitational instabilities or/and dynamical friction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا