تم الكشف عن تشكيل أشكال الموجات الدورانية المشابهة للطبقة الثانية في الشرائح المغناطيسة الطولية المشبعة بطبقة الشحنة المغناطيسية باستخدام تقنية ضوء بريلوين المتحكمة في الوقت والمسافة. وفي النظام الخطي تم العثور على أن التقييد يقلل من شدة المغناطيسية الديناميكية بالقرب من حافات الشريحة الجانبية. وبالتالي تحدث المسماة بالتثبيت المغناطيسي المشبع الفعال في الحافات. في النظام غير الخطي تم الكشف عن حزمة موجة دورانية جديدة وثابتة تتحرك على مسار نمط الموجة، حيث تؤثر الضعف الأفقي والتفاعل مع جدران الموجة الجانبية بشكل هام. وأظهرت التجارب والمحاكاة الرقمية لتطور الحزم الأن الشكل الذي يتأثر به الشكل المشكل للأشكال الموجية وسلوكها بشكل قوي بفعل التقييد.
The formation of quasi-2D spin-wave waveforms in longitudinally magnetized stripes of ferrimagnetic film was observed by using time- and space-resolved Brillouin light scattering technique. In the linear regime it was found that the confinement decreases the amplitude of dynamic magnetization near the lateral stripe edges. Thus, the so-called effective dipolar pinning of dynamic magnetization takes place at the edges. In the nonlinear regime a new stable spin wave packet propagating along a waveguide structure, for which both transversal instability and interaction with the side walls of the waveguide are important was observed. The experiments and a numerical simulation of the pulse evolution show that the shape of the formed waveforms and their behavior are strongly influenced by the confinement.
We examine the evolution of a time-varying perturbation signal pumped into a mono-mode fiber in the anomalous dispersion regime. We analytically establish that the perturbation evolves into a conservative pattern of periodic pulses which structures a
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model
We consider the kick-induced mobility of two-dimensional (2D) fundamental dissipative solitons in models of lasing media based on the 2D complex Ginzburg-Landau (CGL) equation including a spatially periodic potential (transverse grating). The depinni
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an
The problem of stability and spectrum of linear excitations of a soliton (kink) of the dispersive sine-Gordon and $varphi^4$ - equations is solved exactly. It is shown that the total spectrum consists of a discrete set of frequencies of internal mode