ترغب بنشر مسار تعليمي؟ اضغط هنا

تشكيل الكوازي-سوليتونات في وسائل الأفلام المضغوطة المغناطيسية عرضية

Formation of quasi-solitons in transverse confined ferromagnetic film media

208   0   0.0 ( 0 )
 نشر من قبل Mikhail Kostylev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of quasi-2D spin-wave waveforms in longitudinally magnetized stripes of ferrimagnetic film was observed by using time- and space-resolved Brillouin light scattering technique. In the linear regime it was found that the confinement decreases the amplitude of dynamic magnetization near the lateral stripe edges. Thus, the so-called effective dipolar pinning of dynamic magnetization takes place at the edges. In the nonlinear regime a new stable spin wave packet propagating along a waveguide structure, for which both transversal instability and interaction with the side walls of the waveguide are important was observed. The experiments and a numerical simulation of the pulse evolution show that the shape of the formed waveforms and their behavior are strongly influenced by the confinement.

قيم البحث

اقرأ أيضاً

We examine the evolution of a time-varying perturbation signal pumped into a mono-mode fiber in the anomalous dispersion regime. We analytically establish that the perturbation evolves into a conservative pattern of periodic pulses which structures a nd profiles share close similarity with the so-called soliton-crystal states recently observed in fiber media [see e.g. A. Haboucha et al., Phys. Rev. Atextbf{78}, 043806 (2008); D. Y. Tang et al., Phys. Rev. Lett. textbf{101}, 153904 (2008); F. Amrani et al., Opt. Express textbf{19}, 13134 (2011)]. We derive mathematically and generate numerically a crystal of solitons using time division multiplexing of identical pulses. We suggest that at very fast pumping rates, the pulse signals overlap and create an unstable signal that is modulated by the fiber nonlinearity to become a periodic lattice of pulse solitons which can be described by elliptic functions. We carry out a linear stability analysis of the soliton-crystal structure and establish that the correlation of centers of mass of interacting pulses broadens their internal-mode spectrum, some modes of which are mutually degenerate. While it has long been known that high-intensity periodic pulse trains in optical fibers are generated from the phenomenon of modulational instability of continuous waves, the present study provides evidence that they can also be generated via temporal multiplexing of an infinitely large number of equal-intensity single pulses to give rise to stable elliptic solitons.
207 - Nir Dror , Boris A. Malomed 2011
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta}-function or a combination of two {delta}-functions. This model gives rise to ordinary solitons or gap solitons (GSs), which reside, respectively, in the semi-infinite or finite gaps of the systems linear spectrum, being pinned to the {delta}-functions. Physical realizations of these systems are possible in optics and BEC, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta}-function multiplying the nonlinear term supports families of stable regular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta}-function in the absence of the periodic potential is completely unstable. We also show that the {delta}-function can support stable GSs in the first finite gap in both the self-attractive and repulsive models. The stability analysis for the GSs in the second finite gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta}-function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta}-functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta}-functions set symmetrically with respect to the minimum or maximum of the potential.
We consider the kick-induced mobility of two-dimensional (2D) fundamental dissipative solitons in models of lasing media based on the 2D complex Ginzburg-Landau (CGL) equation including a spatially periodic potential (transverse grating). The depinni ng threshold is identified by means of systematic simulations, and described by means of an analytical approximation, depending on the orientation of the kick. Various pattern-formation scenarios are found above the threshold. Most typically, the soliton, hopping between potential cells, leaves arrayed patterns of different sizes in its wake. In the laser cavity, this effect may be used as a mechanism for selective pattern formation controlled by the tilt of the seed beam. Freely moving solitons feature two distinct values of the established velocity. Elastic and inelastic collisions between free solitons and pinned arrayed patterns are studied too.
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an exponential growth in time -- a signature of the transverse instability. The solitons characteristic timescale associated with its exponential growth,is found to depend on the square root of the nonlocality parameter. This, in turn, highlights the nonlocality-induced suppression of the transverse instability. Our analytical predictions are corroborated by direct numerical simulations, with the analytical results being in good agreement with the numerical ones.
The problem of stability and spectrum of linear excitations of a soliton (kink) of the dispersive sine-Gordon and $varphi^4$ - equations is solved exactly. It is shown that the total spectrum consists of a discrete set of frequencies of internal mode s and a single band spectrum of continuum waves. It is indicated by numerical simulations that a translation motion of a single soliton in the highly dispersive systems is accompanied by the arising of its internal dynamics and, in some cases, creation of breathers, and always by generation of the backward radiation. It is shown numerically that a fast motion of two topological solitons leads to a formation of the bound soliton complex in the dispersive sine-Gordon system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا