ﻻ يوجد ملخص باللغة العربية
We examine the evolution of a time-varying perturbation signal pumped into a mono-mode fiber in the anomalous dispersion regime. We analytically establish that the perturbation evolves into a conservative pattern of periodic pulses which structures and profiles share close similarity with the so-called soliton-crystal states recently observed in fiber media [see e.g. A. Haboucha et al., Phys. Rev. Atextbf{78}, 043806 (2008); D. Y. Tang et al., Phys. Rev. Lett. textbf{101}, 153904 (2008); F. Amrani et al., Opt. Express textbf{19}, 13134 (2011)]. We derive mathematically and generate numerically a crystal of solitons using time division multiplexing of identical pulses. We suggest that at very fast pumping rates, the pulse signals overlap and create an unstable signal that is modulated by the fiber nonlinearity to become a periodic lattice of pulse solitons which can be described by elliptic functions. We carry out a linear stability analysis of the soliton-crystal structure and establish that the correlation of centers of mass of interacting pulses broadens their internal-mode spectrum, some modes of which are mutually degenerate. While it has long been known that high-intensity periodic pulse trains in optical fibers are generated from the phenomenon of modulational instability of continuous waves, the present study provides evidence that they can also be generated via temporal multiplexing of an infinitely large number of equal-intensity single pulses to give rise to stable elliptic solitons.
We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression (bubbles) can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are sup
We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or
We report the experimental observation of multiple dispersive waves emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each individual dispersive wave can be associated to one particular dark soliton of the
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model