ترغب بنشر مسار تعليمي؟ اضغط هنا

Trapping cold atoms using surface-grown carbon nanotubes

60   0   0.0 ( 0 )
 نشر من قبل Tal David
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a novel type of conductor to be used in atomchips, enabling atom trapping at sub-micron distances, with implications for both fundamental studies and for technological applications.

قيم البحث

اقرأ أيضاً

We experimentally and numerically study the temporal dynamics of light scattered by large clouds of cold atoms after the exciting laser is switched off in the low intensity (linear optics) regime. Radiation trapping due to multiple scattering as well as subradiance lead to decay much slower than the single atom fluorescence decay. These two effects have already been observed separately, but the interplay between them remained to be understood. Here, we show that with well chosen parameters of the driving field, the two effects can occur at the same time, but follow different scaling behaviors. The subradiant decay is observed at late time and its rate is independent of the detuning, while the radiation trapping decay is observed at intermediate time and depends on the detuning through the optical depth of the sample. Numerical simulations based on random walk process and coupled-dipole equations support our interpretations. Our study clarifies the different interpretations and physical mechanisms at the origin of slow temporal dynamics of light in cold atoms.
91 - Taro Mashimo , Masashi Abe , 2019
We report on highly effective trapping of cold atoms by a new method for a stable single optical trap in the near-optical resonant regime. An optical trap with the near-optical resonance condition consists of not only the dipole but also the radiativ e forces, while a trap using a far-off resonance dominates only the dipole force. We estimate a near-optical resonant trap for ultracold rubidium atoms in the range between -0.373 and -2.23 THz from the resonance. The time dependence of the trapped atoms indicates some difference of the stable center-of-mass positions in the near-optical resonant trap, and also indicates that the differences are caused by the change of the equilibrium condition of the optical dipole and radiative forces. A stable position depends only on laser detuning due to the change in the radiative force; however, the position is ineffective against the change in the laser intensity, which results in a change in the radiative force.
We show that, for a near-resonant propagating beam, a large cloud of cold 87Rb atoms acts as a saturable Kerr medium and produces self-trapping of light. By side fluorescence imaging we monitor the transverse size of the beam and, depending on the si gn of the laser detuning with respect to the atomic transition, we observe self-focusing or -defocusing, with the waist remaining stationary for an appropriate choice of parameters. We analyze our observations by using numerical simulations based on a simple 2-level atom model.
68 - T. David 2008
We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.
167 - S. Berger 2007
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify t wo main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external non-radiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by non-radiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا