ﻻ يوجد ملخص باللغة العربية
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external non-radiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by non-radiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.
Semiconducting single-wall carbon nanotubes are classified into two types by means of orbital angular momentum of valley state, which is useful to study their low energy electronic properties in finite-length. The classification is given by an intege
We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the ra
We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (e
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as wel
The circular dichroism (CD) spectra of single-wall carbon nanotubes are calculated using a dipole approximation. The calculated CD spectra show features that allow us to distinguish between nanotubes with different angles of chirality, and diameters.