ترغب بنشر مسار تعليمي؟ اضغط هنا

Shape parameters of Galactic open clusters

115   0   0.0 ( 0 )
 نشر من قبل Ralf-Dieter Scholz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) In this paper we derive observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. We provide the observed shape parameters of Galactic open clusters, computed with the help of a multi-component analysis. For the vast majority of clusters these parameters are determined for the first time. High resolution (star by star) N-body simulations are carried out with the specially developed $phi$GRAPE code providing models of clusters of different initial masses, Galactocentric distances and rotation velocities. The comparison of models and observations of about 150 clusters reveals ellipticities of observed clusters which are too low (0.2 vs. 0.3), and offers the basis to find the main reason for this discrepancy. The models predict that after $approx 50$ Myr clusters reach an oblate shape with an axes ratio of $1.65:1.35:1$, and with the major axis tilted by an angle of $q_{XY} approx 30^circ$ with respect to the Galactocentric radius due to differential rotation of the Galaxy. Unbiased estimates of cluster shape parameters require reliable membership determination in large cluster areas up to 2-3 tidal radii where the density of cluster stars is considerably lower than the background. Although dynamically bound stars outside the tidal radius contribute insignificantly to the cluster mass, their distribution is essential for a correct determination of cluster shape parameters. In contrast, a restricted mass range of cluster stars does not play such a dramatic role, though deep surveys allow to identify more cluster members and, therefore, to increase the accuracy of the observed shape parameters.

قيم البحث

اقرأ أيضاً

We analyzed the shapes of Galactic open clusters by the star counting technique with the 2MASS star catalog database. Morphological parameters such as the ellipticity and size have been derived via stellar density distribution, weighed by clustering probability. We find that most star clusters are elongated, even for the youngest star clusters of a few million years old, which are located near to the Galactic disk. The shapes of young star clusters must reflect the conditions in the parental molecular clouds and during the cluster formation process. As an open cluster ages, stellar dynamics cause the inner part of the cluster to circularize, but the overall radius gets larger and the stellar density becomes sparser. We discuss how internal relaxation process competes with Galactic external perturbation during cluster evolution.
It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC-2. 5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume- and magnitude-limited samples of clusters, re-determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present-day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk.
The stellar content of Galactic open clusters is gradually depleted during their evolution as a result of internal relaxation and external interactions. The final residues of the evolution of open clusters are called open cluster remnants, barely dis tinguishable from the field. We aimed to characterise and compare the dynamical states of a set of 16 such objects. The sample also includes 7 objects that are catalogued as dynamically evolved open clusters. We used photometric data from the 2MASS, astrometric data from the GAIA DR2 and a decontamination algorithm that was applied to the three-dimensional astrometric space of proper motions and parallaxes for stars in the objects areas. The luminosity and mass functions and total masses for most open cluster remnants are derived here for the first time. Our analysis used predictions of N-body simulations to estimate the initial number of stars of the remnants from their dissolution timescales. The investigated open cluster remnants present masses and velocity dispersions within well-defined ranges: M between ~10-40M_Sun and sigma_v between ~1-7km/s. Some objects in the remnant sample have a limiting radius R_lim<~2pc, which means that they are more compact than the investigated open clusters; other remnants have R_lim between ~2-7pc, which is comparable to the open clusters. We suggest that the open cluster NGC2180 is entering a remnant evolutionary stage. In general, our clusters show signals of depletion of low-mass stars. This confirms their dynamically evolved states. We conclude that the open cluster remnants we studied are in fact remnants of initially very populous open clusters (No~10^3-10^4 stars). The outcome of the long-term evolution is to bring the final residues of the open clusters to dynamical states that are similar to each other, thus masking out the memory of the initial formation conditions of star clusters.
We present BVI CCD photometry of 10 northern open clusters, Berkeley 43, Berkeley 45, Berkeley 47, NGC 6846, Berkeley 49, Berkeley 51, Berkeley 89, Berkeley 91, Tombaugh 4 and Berkeley 9, and estimate their fundamental parameters. Eight of the cluste rs are located in the first galactic quadrant and 2 are in the second. This is the first optical photometry for 8 clusters. All of them are embedded in rich galactic fields and have large reddening towards them (E(B-V) = 1.0 - 2.3 mag). There is a possibility that some of these difficult-to-study clusters may be asterisms rather than physical systems, but assuming they are physical clusters, we find that 8 of them are located beyond 2 kpc, and 6 clusters (60% of the sample) are located well above or below the Galactic plane. Seven clusters have ages 500 Myr or less and the other 3 are 1 Gyr or more in age. This sample of clusters has increased the optical photometry of clusters in the second half of the first galactic quadrant, beyond 2 kpc, from 10 to 15. NGC 6846 is found to be one of the most distant clusters in this region of the Galaxy.
In this study we follow up our recent paper (Monteiro et al. 2020) and present a homogeneous sample of fundamental parameters of open clusters in our Galaxy, entirely based on Gaia DR2 data. We used published membership probability of the stars deriv ed from Gaia DR2 data and applied our isochrone fitting code, updated as in Monteiro et al. (2020), to GB and GR Gaia DR2 data for member stars. In doing this we take into account the nominal errors in the data and derive distance, age, and extinction of each cluster. This work therefore provides parameters for 1743 open clusters and, as a byproduct, a list of likely not physical or dubious open clusters is provided as well for future investigations. Furthermore, it was possible to estimate the mean radial velocity of 831 clusters (198 of which are new and unpublished so far) using stellar radial velocities from Gaia DR2 catalog. By comparing the open cluster distances obtained from isochrone fitting with those obtained from a maximum likelihood estimate of individual member parallaxes, we found a systematic offset of $(-0.05pm0.04)$mas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا