ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

63   0   0.0 ( 0 )
 نشر من قبل Jianbo Lu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational $H(z)$ data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational $H(z)$ data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter $z_{T}=0.632^{+0.256}_{-0.127}$, $q_{0}=-0.788^{+0.182}_{-0.182}$. Furthermore, using $Lambda$CDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of $Omega_{0m}$ and $q_{0}$, but a larger value of $z_{T}$ than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: $Lambda$CDM, $w_{de}(z)=w_{0}$ and $w_{de}(z)=w_{0}+w_{1}ln(1+z)$.

قيم البحث

اقرأ أيضاً

We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 < z < 0.62. With previous data from our High-Z Supernova Search Team, this expanded set of 16 high-redshift supernovae and 34 nearby supernovae are used to place constraints on th e Hubble constant (H_0), the mass density (Omega_M), the cosmological constant (Omega_Lambda), the deceleration parameter (q_0), and the dynamical age of the Universe (t_0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (Omega_M=0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Omega_Lambda > 0) and a current acceleration of the expansion (i.e., q_0 < 0). With no prior constraint on mass density other than Omega_M > 0, the spectroscopically confirmed SNe Ia are consistent with q_0 <0 at the 2.8 sigma and 3.9 sigma confidence levels, and with Omega_Lambda >0 at the 3.0 sigma and 4.0 sigma confidence levels, for two fitting methods respectively. Fixing a ``minimal mass density, Omega_M=0.2, results in the weakest detection, Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior (Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7 sigma to 8 sigma level. We estimate the size of systematic errors, including evolution, extinction, sample selection bias, local flows, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Omega_Lambda=0 and q_0 > 0.
We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisph ere of maximum accelerating expansion rate is in the direction $(l,b)=({309^circ}^{+23^circ}_{-3^circ}, {18^circ}^{+11^circ}_{-10^circ})$ ($omm=0.19$) while the hemisphere of minimum acceleration is in the opposite direction $(l,b)=({129^circ}^{+23^circ}_{-3^circ},{-18^circ}^{+10^circ}_{-11^circ})$ ($omm=0.30$). The level of anisotropy is described by the normalized difference of the best fit values of $omm$ between the two hemispheres in the context of lcdm fits. We find a maximum anisotropy level in the Union2 data of $frac{Delta ommax}{bomm}=0.43pm 0.06$. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about $30%$ of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than $1%$. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.
The combination of different cosmological probes offers stringent tests of the $Lambda$CDM model and enhanced control of systematics. For this purpose, we present an extension of the lightcone generator UFalcon first introduced in Sgier et al. 2019 ( arXiv:1801.05745), enabling the simulation of a self-consistent set of maps for different cosmological probes. Each realization is generated from the same underlying simulated density field, and contains full-sky maps of different probes, namely weak lensing shear, galaxy overdensity including RSD, CMB lensing, and CMB temperature anisotropies from the ISW effect. The lightcone generation performed by UFalcon is parallelized and based on the replication of a large periodic volume simulated with the GPU-accelerated $N$-Body code PkdGrav3. The post-processing to construct the lightcones requires only a runtime of about 1 walltime-hour corresponding to about 100 CPU-hours. We use a randomization procedure to increase the number of quasi-independent full-sky UFalcon map-realizations, which enables us to compute an accurate multi-probe covariance matrix. Using this framework, we forecast cosmological parameter constraints by performing a multi-probe likelihood analysis for a combination of simulated future stage-IV-like surveys. We find that the inclusion of the cross-correlations between the probes significantly increases the information gain in the parameter constraints. We also find that the use of a non-Gaussian covariance matrix is increasingly important, as more probes and cross-correlation power spectra are included. A version of the UFalcon package currently including weak gravitational lensing is publicly available.
228 - Roya Mohayaee 2021
In the late 1990s, observations of 93 Type Ia supernovae were analysed in the framework of the FLRW cosmology assuming these to be `standard(isable) candles. It was thus inferred that the Hubble expansion rate is accelerating as if driven by a positi ve Cosmological Constant $Lambda$. This is still the only direct evidence for the `dark energy that is the dominant component of the standard $Lambda$CDM cosmological model. Other data such as BAO, CMB anisotropies, stellar ages, the rate of structure growth, etc are all `concordant with this model but do not provide independent evidence for accelerated expansion. Analysis of a larger sample of 740 SNe Ia shows that these are not quite standard candles, and highlights the corrections applied to analyse the data in the FLRW framework. The latter holds in the reference frame in which the CMB is isotropic, whereas observations are made in our heliocentric frame in which the CMB has a large dipole anisotropy. This is assumed to be of kinematic origin i.e. due to our non-Hubble motion driven by local inhomogeneity in the matter distribution. The $Lambda$CDM model predicts how this peculiar velocity should fall off as the averaging scale is raised and the universe becomes sensibly homogeneous. However observations of the local `bulk flow are inconsistent with this expectation and convergence to the CMB frame is not seen. Moreover the kinematic interpretation implies a corresponding dipole in the sky distribution of high redshift quasars, which is rejected by observations at 4.9$sigma$. The acceleration of the Hubble expansion rate is also anisotropic at 3.9$sigma$ and aligned with the bulk flow. Thus dark energy may be an artefact of analysing data assuming that we are idealised observers in an FLRW universe, when in fact the real universe is inhomogeneous and anisotropic out to distances large enough to impact on cosmological analyses.
Inferring high-fidelity constraints on the spatial curvature parameter, $Omega_{rm K}$, under as few assumptions as possible, is of fundamental importance in cosmology. We propose a method to non-parametrically infer $Omega_{rm K}$ from late-Universe probes alone. Using Gaussian Processes (GP) to reconstruct the expansion history, we combine Cosmic Chronometers (CC) and Type Ia Supernovae (SNe~Ia) data to infer constraints on curvature, marginalized over the expansion history, calibration of the CC and SNe~Ia data, and the GP hyper-parameters. The obtained constraints on $Omega_{rm K}$ are free from parametric model assumptions for the expansion history, and are insensitive to the overall calibration of both the CC and SNe~Ia data (being sensitive only to relative distances and expansion rates). Applying this method to textit{Pantheon} SNe~Ia and the latest compilation of CCs, we find $Omega_{rm K} = -0.03 pm 0.26$, consistent with spatial flatness at the $mathcal{O}(10^{-1})$ level, and independent of any early-Universe probes. Applying our methodology to future Baryon Acoustic Oscillations and SNe~Ia data from upcoming Stage IV surveys, we forecast the ability to constrain $Omega_{rm K}$ at the $mathcal{O}(10^{-2})$ level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا