ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-parametric spatial curvature inference using late-universe cosmological probes

101   0   0.0 ( 0 )
 نشر من قبل Suhail Dhawan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inferring high-fidelity constraints on the spatial curvature parameter, $Omega_{rm K}$, under as few assumptions as possible, is of fundamental importance in cosmology. We propose a method to non-parametrically infer $Omega_{rm K}$ from late-Universe probes alone. Using Gaussian Processes (GP) to reconstruct the expansion history, we combine Cosmic Chronometers (CC) and Type Ia Supernovae (SNe~Ia) data to infer constraints on curvature, marginalized over the expansion history, calibration of the CC and SNe~Ia data, and the GP hyper-parameters. The obtained constraints on $Omega_{rm K}$ are free from parametric model assumptions for the expansion history, and are insensitive to the overall calibration of both the CC and SNe~Ia data (being sensitive only to relative distances and expansion rates). Applying this method to textit{Pantheon} SNe~Ia and the latest compilation of CCs, we find $Omega_{rm K} = -0.03 pm 0.26$, consistent with spatial flatness at the $mathcal{O}(10^{-1})$ level, and independent of any early-Universe probes. Applying our methodology to future Baryon Acoustic Oscillations and SNe~Ia data from upcoming Stage IV surveys, we forecast the ability to constrain $Omega_{rm K}$ at the $mathcal{O}(10^{-2})$ level.



قيم البحث

اقرأ أيضاً

In the context of a Hubble tension problem that is growing in its statistical significance, we reconsider the effectiveness of non-parametric reconstruction techniques which are independent of prescriptive cosmological models. By taking cosmic chrono meters, Type Ia Supernovae and baryonic acoustic oscillation data, we compare and contrast two important reconstruction approaches, namely Gaussian processes (GP) and the Locally weighted Scatterplot Smoothing together with Simulation and extrapolation method (LOESS-Simex or LS). We firstly show how both GP and LOESS-Simex can be used to successively reconstruct various data sets to a high level of precision. We then directly compare both approaches in a quantitative manner by considering several factors, such as how well the reconstructions approximate the data sets themselves to how their respective uncertainties evolve. In light of the puzzling Hubble tension, it is important to consider how the uncertain regions evolve over redshift and the methods compare for estimating cosmological parameters at current times. For cosmic chronometers and baryonic acoustic oscillation compiled data sets, we find that GP generically produce smaller variances for the reconstructed data with a minimum value of $sigma_{rm GP-min} = 1.1$, while the situation for LS is totally different with a minimum of $sigma_{rm LS-min} = 50.8$. Moreover, some of these characteristics can be alliviate at low $z$, where LS presents less underestimation in comparison to GP.
Perturbative quantities, such as the growth rate ($f$) and index ($gamma$), are powerful tools to distinguish different dark energy models or modified gravity theories even if they produce the same cosmic expansion history. In this work, without any assumption about the dynamics of the Universe, we apply a non-parametric method to current measurements of the expansion rate $H(z)$ from cosmic chronometers and high-$z$ quasar data and reconstruct the growth factor and rate of linearised density perturbations in the non-relativistic matter component. Assuming realistic values for the matter density parameter $Omega_{m0}$, as provided by current CMB experiments, we also reconstruct the evolution of the growth index $gamma$ with redshift. We show that the reconstruction of current $H(z)$ data constrains the growth index to $gamma=0.56 pm 0.12$ (2$sigma$) at $z = 0.09$, which is in full agreement with the prediction of the $Lambda$CDM model and some of its extensions.
The cosmological jerk parameter $j$ is reconstructed in a non-parametric way from observational data independent of a fiducial cosmological model. From this kinematical quantity, the equation of state parameter for composite matter distribution is al so found out. The result shows that there is a deviation from the $Lambda$CDM model close to $z=1.5$, at the $3sigma$ confidence level.
Applying the distance sum rule in strong gravitational lensing (SGL) and type Ia supernova (SN Ia) observations, one can provide an interesting cosmological model-independent method to determine the cosmic curvature parameter $Omega_k$. In this paper , with the newly compiled data sets including 161 galactic-scale SGL systems and 1048 SN Ia data, we place constraints on $Omega_k$ within the framework of three types of lens models extensively used in SGL studies. Moreover, to investigate the effect of different mass lens samples on the results, we divide the SGL sample into three sub-samples based on the center velocity dispersion of intervening galaxies. In the singular isothermal sphere (SIS) and extended power-law lens models, a flat universe is supported with the uncertainty about 0.2, while a closed universe is preferred in the power-law lens model. We find that the choice of lens models and the classification of SGL data actually can influence the constraints on $Omega_k$ significantly.
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of the model are being determined with increasing and unprecedented precision, it is not guaranteed that the same model will fit more precise observations from widely different cosmic epochs. Discrepancies developing between observations at early and late cosmological time may require an expansion of the standard model, and may lead to the discovery of new physics. The workshop Tensions between the Early and the Late Universe was held at the Kavli Institute for Theoretical Physics on July 15-17 2019 (More details of the workshop (including on-line presentations) are given at the website: https://www.kitp.ucsb.edu/activities/enervac-c19) to evaluate increasing evidence for these discrepancies, primarily in the value of the Hubble constant as well as ideas recently proposed to explain this tension. Multiple new observational results for the Hubble constant were presented in the time frame of the workshop using different probes: Cepheids, strong lensing time delays, tip of the red giant branch (TRGB), megamasers, Oxygen-rich Miras and surface brightness fluctuations (SBF) resulting in a set of six new ones in the last several months. Here we present the summary plot of the meeting that shows combining any three independent approaches to measure H$_0$ in the late universe yields tension with the early Universe values between 4.0$sigma$ and 5.8$sigma$. This shows that the discrepancy does not appear to be dependent on the use of any one method, team, or source. Theoretical ideas to explain the discrepancy focused on new physics in the decade of expansion preceding recombination as the most plausible. This is a brief summary of the workshop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا