ﻻ يوجد ملخص باللغة العربية
In this paper, we study metrics of quantum states. These metrics are natural generalization of trace metric and Bures metric. We will prove that the metrics are joint convex and contractive under quantum operation. Our results can find important application in studying the geometry of quantum states and is useful to detect entanglement.
Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (
We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, a
Suppose we have many copies of an unknown $n$-qubit state $rho$. We measure some copies of $rho$ using a known two-outcome measurement $E_{1}$, then other copies using a measurement $E_{2}$, and so on. At each stage $t$, we generate a current hypothe
We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the central open question raised in [Groisman,