ﻻ يوجد ملخص باللغة العربية
We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the central open question raised in [Groisman, PRA 72, 032317 (2005)] and complements their main result that the minimal rate of noise needed to erase all correlations is given by the quantum mutual information. We extend our discussion to the tripartite setting where we show that an asymptotic rate of noise given by the regularized relative entropy of recovery is sufficient to catalytically transform the state to a locally recoverable version of the state.
This paper establishes single-letter formulas for the exact entanglement cost of generating bipartite quantum states and simulating quantum channels under free quantum operations that completely preserve positivity of the partial transpose (PPT). Fir
We study the dynamical process of disentanglement of two qubits and two qutrits coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. We use the concurrence and negativity to quantify entanglement of two qub
To quantify non-Markovianity of tripartite quantum states from an operational viewpoint, we introduce a class $Omega^*$ of operations performed by three distant parties. A tripartite quantum state is a free state under $Omega^*$ if and only if it is
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due t
We quantitatively assess the energetic cost of several well-known control protocols that achieve a finite time adiabatic dynamics, namely counterdiabatic and local counterdiabatic driving, optimal control, and inverse engineering. By employing a cost