ﻻ يوجد ملخص باللغة العربية
One of the key applications for the emerging quantum simulators is to emulate the ground state of many-body systems, as it is of great interest in various fields from condensed matter physics to material science. Traditionally, in an analog sense, adiabatic evolution has been proposed to slowly evolve a simple Hamiltonian, initialized in its ground state, to the Hamiltonian of interest such that the final state becomes the desired ground state. Recently, variational methods have also been proposed and realized in quantum simulators for emulating the ground state of many-body systems. Here, we first provide a quantitative comparison between the adiabatic and variational methods with respect to required quantum resources on digital quantum simulators, namely the depth of the circuit and the number of two-qubit quantum gates. Our results show that the variational methods are less demanding with respect to these resources. However, they need to be hybridized with a classical optimization which can converge slowly. Therefore, as the second result of the paper, we provide two different approaches for speeding the convergence of the classical optimizer by taking a good initial guess for the parameters of the variational circuit. We show that these approaches are applicable to a wide range of Hamiltonian and provide significant improvement in the optimization procedure.
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a
We discuss classical algorithms for approximating the largest eigenvalue of quantum spin and fermionic Hamiltonians based on semidefinite programming relaxation methods. First, we consider traceless $2$-local Hamiltonians $H$ describing a system of $
We introduce reinforcement learning (RL) formulations of the problem of finding the ground state of a many-body quantum mechanical model defined on a lattice. We show that stoquastic Hamiltonians - those without a sign problem - have a natural decomp
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technolog