ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular limits for the Riemann problem. General diffusion, relaxation, and boundary conditions

137   0   0.0 ( 0 )
 نشر من قبل Philippe G. LeFloch
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider self-similar approximations of nonlinear hyperbolic systems in one space dimension with Riemann initial data and general diffusion matrix. We assume that the matrix of the system is strictly hyperbolic and the diffusion matrix is close to the identity. No genuine nonlinearity assumption is required. We show the existence of a smooth, self-similar solution which has bounded total variation, uniformly in the diffusion parameter. In the zero-diffusion limit, the solutions converge to a solution of the Riemann problem associated with the hyperbolic system. A similar result is established for the relaxation approximation and the boundary-value problem in a half-space for the same regularizations.



قيم البحث

اقرأ أيضاً

This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solu tions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs ubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discret e) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomor-phic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.
We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posednes s of the associated Cauchy problems in $C_0(Omega)$ and $L_1(Omega)$. In order to do so we develop a new method of embedding finite state Markov processes into Feller processes and then show convergence of the respective Feller processes. This also gives a numerical approximation of the solution. The proof of well-posedness closes a gap in many numerical algorithm articles approximating solutions to fractional differential equations that use the Lax-Richtmyer Equivalence Theorem to prove convergence without checking well-posedness.
109 - J.Z. Farkas , P. Hinow 2010
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. The model is equipped with generalized Wentzell-Robin (or dynamic) boundary conditions. This all ows modelling of adhesion at extremely small or large sizes. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. This is carried out via establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is our model admits a finite dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا