ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-field Inflation with a Random Potential

103   0   0.0 ( 0 )
 نشر من قبل Jiajun Xu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.



قيم البحث

اقرأ أيضاً

We investigate slow-roll inflation in a multi-field random Gaussian landscape. The landscape is assumed to be small-field, with a correlation length much smaller than the Planck scale. Inflation then typically occurs in small patches of the landscape , localized near inflection or saddle points. We find that the inflationary track is typically close to a straight line in the field space, and the statistical properties of inflation are similar to those in a one-dimensional landscape. This picture of multi-field inflation is rather different from that suggested by the Dyson Brownian motion model; we discuss the reasons for this difference. We also discuss tunneling from inflating false vacua to the neighborhood of inflection and saddle points and show that the tunneling endpoints tend to concentrate along the flat direction in the landscape.
221 - Zygmunt Lalak 2007
Moduli with flat or run-away classical potentials are generic in theories based on supersymmetry and extra dimensions. They mix between themselves and with matter fields in kinetic terms and in the nonperturbative superpotentials. As the result, inte resting structure appears in the scalar potential which helps to stabilise and trap moduli and leads to multi-field inflation. The new and attractive feature of multi-inflationary setup are isocurvature perturbations which can modify in an interesting way the final spectrum of primordial fluctuations resulting from inflation.
Multi-field inflation with a curved scalar geometry has been found to support background trajectories that violate the slow-roll, slow-turn conditions and thus have the potential to evade the swampland constraints. In order to understand how generic this novel behaviour is and what conditions lead to it, we perform a classification of dynamical attractors of two-field inflation that are of the scaling type. Scaling solutions form a one-parameter generalization of De Sitter solutions with a constant value of the first Hubble flow parameter $epsilon$ and, as we argue and demonstrate, form a natural starting point for the study of non-slow-roll slow-turn behaviour. All scaling solutions can be classified as critical points of a specific dynamical system. We recover known multi-field inflationary attractors as approximate scaling solutions and classify their stability using dynamical system techniques. In particular, we discover that dynamical bifurcations play an integral role in the transition between geodesic and non-geodesic motion and discuss the ability of scaling solutions to describe realistic multi-field models. We revisit the criteria for background stability and show cases where the usual criteria found in the literature do not capture the background evolution of the system.
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixin g conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected Slavnov-Taylor identities. We derive the corresponding consistency relations between correlation functions of cosmological perturbations in two different ways, by the connected and one-particle-irreducible Greens functions. The lowest-order consistency relations are explicitly given, and we find that even in multi-field inflation the consistency relations in the soft limit are independent of the detail of the matter sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا