ﻻ يوجد ملخص باللغة العربية
The presence of macroscopic phase separation between the superconducting and magnetic phases in cfcaf is demonstrated by muon spin rotation (muSR) measurements conducted across their phase boundaries (x=0.05-0.15). The magnetic phase tends to retain the high transition temperature (T_m > T_c), while Co-doping induces strong randomness. The volumetric fraction of superconducting phase is nearly proportional to the Co content $x$ with constant superfluid density. These observations suggest the formation of superconducting islands (or domains) associated with Co ions in the Fe$_2$As$_2$ layers, indicating a very short coherence length.
The interplay between unconventional Cooper pairing and quantum states associated with atomic scale defects is a frontier of research with many open questions. So far, only a few of the high-temperature superconductors allow this intricate physics to
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce diso
Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconduct
The Ru doping effect on the Dirac cone states is investigated in iron pnictide superconductors Ba(Fe$_{1-x}$Ru$_x$As)$_2$ using the transverse magnetoresistance (MR) measurements as a function of temperature. The linear development of MR against magn
We report magnetotransport measurements and its scaling analysis for the optimally electron doped Sr(Fe${_{0.88}}$Co${_{0.12}}$)${_2}$As${_2}$ system. We pbserve that both the Kohlers and modified Kohlers scalings are violated. Interestingly, the Hal