ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of Dirac-Cone States and Superconductivity in Iron Pnictide Ba(Fe$_{1-x}$Ru$_x$As)$_2$

114   0   0.0 ( 0 )
 نشر من قبل Yoichi Tanabe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ru doping effect on the Dirac cone states is investigated in iron pnictide superconductors Ba(Fe$_{1-x}$Ru$_x$As)$_2$ using the transverse magnetoresistance (MR) measurements as a function of temperature. The linear development of MR against magnetic field $B$ is observed for $x$ = 0 - 0.244 at low temperatures below the antiferromagnetic transition. The $B$-linear MR is interpreted in terms of the quantum limit of the Dirac cone states by using the model proposed by Abrikosov. An intriguing evidence is shown that the Dirac cone state persists on the electronic phase diagram where the antiferromagnetism and the superconductivity coexist.



قيم البحث

اقرأ أيضاً

Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatu res unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
The quasi-1D organic Bechgaard salt (TMTSF)$_2$PF$_6$ displays spin-density-wave (SDW) order and superconductivity in close proximity in the temperature-pressure phase diagram. We have measured its normal-state electrical resistivity $rho_a(T)$ as a function of temperature and pressure, in the $T to 0$ limit. At the critical pressure where SDW order disappears, $rho_a(T) propto T$ down to the lowest measured temperature (0.1 K). With increasing pressure, $rho_a(T)$ acquires a curvature that is well described by $rho_a(T) = rho_0 + AT + BT^2$, where the strength of the linear term, measured by the $A$ coefficient, is found to scale with the superconducting transition temperature $T_c$. This correlation between $A$ and $T_c$ strongly suggests that scattering and pairing in (TMTSF)$_2$PF$_6$ have a common origin, most likely rooted in the antiferromagnetic spin fluctuations associated with SDW order. Analysis of published resistivity data on the iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ reveals a detailed similarity with (TMTSF)$_2$PF$_6$, suggesting that antiferromagnetic fluctuations play a similar role in the pnictides.
111 - T. Urata , Y. Tanabe , K. K. Huynh 2013
The effect of Mn substitution, acting as a magnetic impurity for Fe, on the Dirac cone was investigated in Ba(Fe$_{1-x}$Mn$_x$As)$_2$. Both magnetoresistance and Hall resistivity studies clearly indicate that the cyclotron effective mass ($m^{ast}$) of the Dirac cone is anomalously enhanced at low temperatures by the impurity, although its evolution as a function of carrier number proceeds in a conventional manner at higher temperatures. Kondo-like band renormalization induced by the magnetic impurity scattering is suggested as an explanation for this, and the anomalous mass enhancement of the Dirac fermions is discussed.
177 - A. Thaler , N. Ni , A. Kracher 2010
Single crystals of Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$, $x<0.37$, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe$_2$As$_2$ at 1 34 K is suppressed monotonically by Ru doping, but, unlike doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent compound does not detectably split into two separate ones. Superconductivity is stabilized at low temperatures for $x>0.2$ and continues through the highest doping levels we report. The superconducting region is dome like, with maximum T$_c$ ($sim16.5$ K) found around $xsim 0.29$. A phase diagram of temperature versus doping, based on electrical transport and magnetization measurements, has been constructed and compared to those of the Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Co, Ni, Rh, Pd) series as well as to the temperature-pressure phase diagram for pure BaFe$_2$As$_2$. Suppression of the structural/magnetic phase transition as well as the appearance of superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh and Pd doping, and appears to have more in common with BaFe$_2$As$_2$ tuned with pressure; by plotting $T_S/T_m$ and $T_c$ as a function of changes in unit cell dimensions, we find that changed in the $c/a$ ratio, rather than changes in $c$, $a$ or V, unify the $T(p)$ and $T(x)$ phase diagrams for BaFe$_2$As$_2$ and Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ respectively.
Measurements of the current-voltage characteristics were performed on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with doping level $0.044 leq x leq 0.1$. An unconventional increase in the flux-flow resistivity $rho_{rm ff}$ with decreasing magnet ic field was observed across this doping range. Such an abnormal field dependence of flux-flow resistivity is in contrast with the linear field dependence of $rho_{rm ff}$ in conventional type-II superconductors, but is similar to the behavior recently observed in the heavy-fermion superconductor CeCoIn$_5$. A significantly enhanced $rho_{rm ff}$ was found for the x=0.06 single crystals, implying a strong single-particle energy dissipation around the vortex cores. At different temperatures and fields and for a given doping concentration, the normalized $rho_{rm ff}$ scales with normalized field and temperature. The doping level dependence of these parameters strongly suggests that the abnormal upturn flux-flow resisitivity is likely related to the enhancement of spin fluctuations around the vortex cores of the optimally doped samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا