ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Total Angular Momentum Eigenstates in Remote Qubits

71   0   0.0 ( 0 )
 نشر من قبل Christoph Thiel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme enabling the universal coupling of angular momentum of $N$ remote noninteracting qubits using linear optical tools only. Our system consists of $N$ single-photon emitters in a $Lambda$-configuration that are entangled among their long-lived ground-state qubits through suitably designed measurements of the emitted photons. In this manner, we present an experimentally feasible algorithm that is able to generate any of the $2^N$ symmetric and nonsymmetric total angular momentum eigenstates spanning the Hilbert space of the $N$-qubit compound.


قيم البحث

اقرأ أيضاً

Orbital angular momentum (OAM) of light is an attractive degree of freedom for funda- mentals studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambigu ous mea- surement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77 percent. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of lights OAM with an experimental separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particu- larly attractive for enhancing the information capacity of multi-level quantum cryptography systems.
Optical beams with periodic lattice structures have broadened the study of structured waves. In the present work, we generate spin-orbit entangled photon states with a lattice structure and use them in a remote state preparation protocol. We sequenti ally measure spatially-dependent correlation rates with an electron-multiplying intensified CCD camera and verify the successful remote preparation of spin-orbit states by performing pixel-wise quantum state tomography. Control of these novel structured waves in the quantum regime provides a method for quantum sensing and manipulation of periodic structures.
Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.
104 - Chengyuan Wang , Ya Yu , Yun Chen 2020
The spatial modes of light, carrying a quantized amount of orbital angular momentum (OAM), is one of the excellent candidates that provides access to high-dimensional quantum states, which essentially makes it promising towards building high-dimensio nal quantum networks. In this paper, we report the storage and retrieval of photonic qubits encoded with OAM state in the cold atomic ensemble, achieving an average conditional fidelity above 98% and retrieval efficiency around 65%. The photonic OAM qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically induced transparency in an elongated cold rubidium atomic ensemble. Our work constitutes an efficient node that is needed towards high dimensional and large scale quantum networks.
The orbital angular momentum of light (OAM) provides a promising approach for the implementation of multidimensional states (qudits) for quantum information purposes. In order to characterize the degradation undergone by the information content of qu bits encoded in a bidimensional subspace of the orbital angular momentum degree of freedom of photons, we study how the state fidelity is affected by a transverse obstruction placed along the propagation direction of the light beam. Emphasis is placed on the effects of planar and radial hard-edged aperture functions on the state fidelity of Laguerre-Gaussian transverse modes and the entanglement properties of polarization-OAM hybrid-entangled photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا