ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards efficient quantum memory of orbital angular momentum qubits in cold atoms

105   0   0.0 ( 0 )
 نشر من قبل Ya Yu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial modes of light, carrying a quantized amount of orbital angular momentum (OAM), is one of the excellent candidates that provides access to high-dimensional quantum states, which essentially makes it promising towards building high-dimensional quantum networks. In this paper, we report the storage and retrieval of photonic qubits encoded with OAM state in the cold atomic ensemble, achieving an average conditional fidelity above 98% and retrieval efficiency around 65%. The photonic OAM qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically induced transparency in an elongated cold rubidium atomic ensemble. Our work constitutes an efficient node that is needed towards high dimensional and large scale quantum networks.

قيم البحث

اقرأ أيضاً

Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.
The Einstein Podolsky Rosen (EPR) entangled quantum state is of special importance not only for fundamental research in quantum mechanics, but also for information processing in the field of quantum information. Previous EPR entangled state demonstra tions were constructed with photons of equal phase wave fronts. More complex scenarios with structured wave fronts have not been investigated. Here, we report the first experimental demonstration of EPR entanglement for photon pairs carrying orbital angular momentum (OAM) information, resulting in an OAM embedded EPR entangled state. We measured the dynamics of the dependence of the ghost interference on relative phase under projection. In addition, the reconstructed matrix in the OAM and EPR position momentum spaces shows a specific hyper entanglement in high dimension.
100 - R. Inoue , N. Kanai , T. Yonehara 2006
Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, textit{et al.}, Phys. Rev. Lett. textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states we re correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.
Optical quantum memory is an essential element for long distance quantum communication and photonic quantum computation protocols. The practical implementation of such protocols requires an efficient quantum memory with long coherence time. Beating t he no-cloning limit, for example, requires efficiencies above 50%. An ideal optical fibre loop has a loss of 50% in 100 $mu$ s, and until now no universal quantum memory has beaten this time-efficiency limit. Here, we report results of a gradient echo memory (GEM) experiment in a cold atomic ensemble with a 1/e coherence time up to 1ms and maximum efficiency up to 87$pm$2% for short storage times. Our experimental data demonstrates greater than 50% efficiency for storage times up to 0.6ms. Quantum storage ability is verified beyond the ideal fibre limit using heterodyne tomography of small coherent states.
We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein conde nsate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا