ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of natal kicks on merger rates and spin-orbit misalignments of black hole -- neutron star mergers

79   0   0.0 ( 0 )
 نشر من قبل Giacomo Fragione
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long wait for the detection of merging black hole -- neutron star (BH--NS) binaries is finally over with the announcement by the LIGO/Virgo/Kagra collaboration of GW200105 and GW200115. Remarkably, the primary of GW200115 has a negative spin projection onto the orbital angular momentum, with about $90%$ probability. Merging BH--NS binaries are expected to form mainly through the evolution of massive binary stars in the field, since their dynamical formation in dense star clusters is strongly suppressed by mass segregation. In this paper, we carry out a systematic statistical study of the binary stars that evolve to form a BH--NS binary, considering different metallicities and taking into account the uncertainties on the natal kick distributions for BHs and NSs and on the common envelope phase of binary evolution. Under the assumption that the initial stellar spins are aligned with the binary angular momentum, we show that both large natal kicks ($gtrsim 150$ km s$^{-1}$) and high efficiencies for common envelope ejection are required to simultaneously explain the inferred high merger rates and the large spin-orbit misalignment of GW200115.

قيم البحث

اقرأ أيضاً

Black hole-neutron star (BHNS) binaries are amongst promising candidates for the joint detection of electromagnetic (EM) signals with gravitational waves (GWs) and are expected to be detected in the near future. Here we study the effect of the BHNS b inary parameters on the merger ejecta properties and associated EM signals. We estimate the remnant disk and unbound ejecta masses for BH mass and spin distributions motivated from the observations of transient low-mass X-ray binaries (LMXBs) and specific NS equation of state (EoS). The amount of r-process elements synthesised in BHNS mergers is estimated to be a factor of $sim 10^{2}-10^{4}$ smaller than BNS mergers, due to the smaller dynamical ejecta and merger rates for the former. We compute the EM luminosities and light curves for the early- and late-time emissions from the ultra-relativistic jet, sub-relativistic dynamical ejecta and wind, and the mildly-relativistic cocoon for typical ejecta parameters. We then evaluate the low-latency EM follow-up rates of the GW triggers in terms of the GW detection rate $dot{N}_{GW}$ for current telescope sensitivities and typical BHNS binary parameters to find that most of the EM counterparts are detectable for high BH spin, small BH mass and stiffer NS EoS when NS disruption is significant. Based on the relative detection rates for given binary parameters, we find the ease of EM follow-up to be: ejecta afterglow $>$ cocoon afterglow $gtrsim$ jet prompt $>$ ejecta macronova $>$ cocoon prompt $>$ jet afterglow $>>$ wind macronova $>>$ wind afterglow.
Primordial stars are likely to be very massive $geq30Msun$, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range $10^{6}-10^{10}Ms$. Such early black holes, at redshifts z $gtsim10$, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.
We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $in [1,3] M_{odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $in [2,99] M_{odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35pm0.13 M_{odot}$ at a volume-weighted average distance of $sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_odot$ and black hole masses of at least $5M_odot$, a volume-weighted average distance of at least $sim$ 110Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc$^{-3}$yr$^{-1}$ for binary-neutron star systems and less than 3,600 Gpc$^{-3}$yr$^{-1}$ for neutron-star--black-hole systems. We find that if no detection of neutron-star binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of $10^{+20}_{-7}$Gpc$^{-3}$yr$^{-1}$ short gamma ray bursts beamed towards the Earth and assuming that all short gamma-ray bursts have binary-neutron-star (neutron-star--black-hole) progenitors we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than ${2.3^{+1.7}_{-1.1}}^{circ}$ (${4.3^{+3.1}_{-1.9}}^{circ}$).
The first and second Gravitational Wave Transient Catalogs by the LIGO/Virgo Collaboration include $50$ confirmed merger events from the first, second, and first half of the third observational runs. We compute the distribution of recoil kicks impart ed to the merger remnants and estimate their retention probability within various astrophysical environments as a function of the maximum progenitor spin ($chi_{rm max}$), assuming that the LIGO/Virgo binary black hole (BBH) mergers were catalyzed by dynamical assembly in a dense star cluster. We find that the distributions of average recoil kicks are peaked at about $150$ km s$^{-1}$, $250$ km s$^{-1}$, $350$ km s$^{-1}$, $600$ km s$^{-1}$, for maximum progenitor spins of $0.1$, $0.3$, $0.5$, $0.8$, respectively. Only environments with escape speed $gtrsim 100$ km s$^{-1}$, as found in galactic nuclear star clusters as well as in the most massive globular clusters and super star clusters, could efficiently retain the merger remnants of the LIGO/Virgo BBH population even for low progenitor spins ($chi_{rm max}=0.1$). In the case of high progenitor spins ($chi_{rm max}gtrsim 0.5$), only the most massive nuclear star clusters can retain the merger products. We also show that the estimated values of the effective spin and of the remnant spin of GW170729, GW190412, GW190519, and GW190620 can be reproduced if their progenitors were moderately spinning ($chi_{rm max}gtrsim 0.3$), while for GW190517 if the progenitors were rapidly spinning ($chi_{rm max}gtrsim 0.8$). Alternatively, some of these events could be explained if at least one of the progenitors is already a second-generation BH, originated from a previous merger.
Mergers of black hole (BH) and neutron star (NS) binaries are of interest since the emission of gravitational waves (GWs) can be followed by an electromagnetic (EM) counterpart, which could power short gamma-ray bursts. Until now, LIGO/Virgo has only observed a candidate BH-NS event, GW190426_152155, which was not followed by any EM counterpart. We discuss how the presence (absence) of a remnant disk, which powers the EM counterpart, can be used along with spin measurements by LIGO/Virgo to derive a lower (upper) limit on the radius of the NS. For the case of GW190426_152155, large measurement errors on the spin and mass ratio prevent from placing an upper limit on the NS radius. Our proposed method works best when the aligned component of the BH spin (with respect to the orbital angular momentum) is the largest, and can be used to complement the information that can be extracted from the GW signal to derive valuable information on the NS equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا