ترغب بنشر مسار تعليمي؟ اضغط هنا

Scherk-Schwarz Breaking and Intersecting Branes

125   0   0.0 ( 0 )
 نشر من قبل Carlo Angelantonj
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of Scherk-Schwarz deformations on intersecting branes. Non-chiral fermions in any representation of the Chan-Paton gauge group generically acquire a tree-level mass dependent on the compactification radius and the brane wrapping numbers. This offers an elegant solution to one of the long-standing problems in intersecting-brane-world models where the ubiquitous presence of massless non-chiral fermions is a clear embarrassment for any attempt to describe the Standard Model of Particle Physics.



قيم البحث

اقرأ أيضاً

We present a five-dimensional model compactified on an interval where supersymmetry is broken by the Scherk-Schwarz mechanism. The gauge sector propagates in the bulk, two Higgs hypermultiplets are quasilocalized, and quark and lepton multiplets loca lized, in one of the boundaries. The effective four-dimensional theory is the MSSM with very heavy gauginos, heavy squarks and light sleptons and Higgsinos. The soft tree-level squared masses of the Higgs sector can be negative and they can (partially) cancel the positive one-loop contributions from the gauge sector. Electroweak symmetry breaking can then comfortably be triggered by two-loop radiative corrections from the top-stop sector. The fine tuning required to obtain the electroweak scale is found to be much smaller than in the MSSM, with essentially no fine-tuning for few TeV gaugino masses. All bounds from direct Higgs searches at LEP and from electroweak precision observables can be satisfied. The lightest supersymmetric particle is a (Higgsino-like) neutralino that can accomodate the abundance of Dark Matter consistently with recent WMAP observations.
In this paper, we will consider the chiral symmetry breaking in the holographic model constructed from the intersecting brane configuration, and investigate the Nambu-Goldstone bosons associated with this symmetry breaking.
100 - Gianluca Inverso 2017
A procedure is described to construct generalised Scherk-Schwarz uplifts of gauged supergravities. The internal manifold, fluxes, and consistent truncation Ansatz are all derived from the embedding tensor of the lower-dimensional theory. We first des cribe the procedure to construct generalised Leibniz parallelisable spaces where the vector components of the frame are embedded in the adjoint representation of the gauge group, as specified by the embedding tensor. This allows us to recover the generalised Scherk-Schwarz reductions known in the literature and to prove a no-go result for the uplift of $omega$-deformed SO(p,q) gauged maximal supergravities. We then extend the construction to arbitrary generalised Leibniz parallelisable spaces, which turn out to be torus fibrations over manifolds in the class above.
We demonstrate the relation between the Scherk-Schwarz mechanism and flipped gauged brane-bulk supergravities in five dimensions. We discuss the form of supersymmetry violating Scherk-Schwarz terms in pure supergravity and in supergravity coupled to matter. Although the Lagrangian mass terms that arise as the result of the Scherk-Schwarz redefinition of fields are naturally of the order of the inverse radius of the orbifold, the effective 4d physical mass terms are rather set by the scale sqrt{|bar{Lambda}|}, where bar{Lambda} is the 4d cosmlogical constant.
We construct a one-parameter set of intersecting D4-brane models, with six stacks, that yield the (non-supersymmetric) standard model plus extra vector-like matter. Twisted tadpoles and gauge anomalies are cancelled, and the model contains all of the Yukawa couplings to the tachyonic Higgs doublets that are needed to generate mass terms for the fermions. A string scale in the range 1-10 TeV and a Higgs mass not much greater than the current bound is obtained for certain values of the parameters, consistently with the observed values of the gauge coupling constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا