ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Distribution of Nucleosynthesis Products in Cassiopeia A: Comparison Between Observations and 3D Explosion Models

39   0   0.0 ( 0 )
 نشر من قبل Steven Diehl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine observed heavy element abundances in the Cassiopeia A supernova remnant as a constraint on the nature of the Cas A supernova. We compare bulk abundances from 1D and 3D explosion models and spatial distribution of elements in 3D models with those derived from X-ray observations. We also examine the cospatial production of 26Al with other species. We find that the most reliable indicator of the presence of 26Al in unmixed ejecta is a very low S/Si ratio (~0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multiwavelength observations.

قيم البحث

اقرأ أيضاً

We present results from the first light observations of the Cassiopeia A (Cas A) supernova remnant (SNR) by the Chandra X-ray Observatory. The X-ray spectrum varies on all spatial scales down to the instrumental limit (0.02 pc at the SNR). Based on r epresentative spectra from four selected regions we investigate the processes of nucleosynthesis and mixing in Cas A. We make the first unequivocal identification of iron-rich ejecta produced by explosive silicon-burning in a young Galactic SNR. Elsewhere in the remnant we see silicon-rich ejecta from explosive oxygen-burning. Remarkably, our study finds that the Fe-rich ejecta lies outside the Si-rich material, leading to the conclusion that bulk motions of the ejecta were extensive and energetic enough in Cas A to cause a spatial inversion of a significant portion of the supernova core during the explosion. It is likely that this inversion was caused by ``Fe-rich ejecta emerging in plumes from the rising bubbles in the neutrino-driven convection layer. In addition the radioactive decay energy from $^{56}$Ni may have contributed to the subsequent evolution of the material. We have also discovered faint, well-defined filaments with featureless X-ray spectra that are possibly the sites of cosmic ray acceleration in Cas A.
223 - H.-Thomas Janka , 2017
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
345 - Patrick Petitjean 2001
Very recently a new inversion method has been developped to analyze the intergalactic medium seen in absorption in quasar spectra (the so-called Lyman-alpha forest). This method is applied to recover the temperature of the gas and the underlying dens ity field. Using constraints from the Lyman-beta forest, it is possible to recover this field up to over-densities delta=10. By inverting the HI and CIV absorptions together it has been shown that the CIV/HI ratio varies through the profile of strong lines, beeing larger in the wings. The method can be applied to reconstruct the 3D density field from multiple lines of sight and is shown to give good results up to mean separations of 3 arcmin. Results from a survey of QSO pairs performed with HST/STIS and VLT/UVES-FORS are summarized.
Progress in the three-dimensional modeling of supernovae (SN) prompts us to revisit the supernova remnant (SNR) phase. We continue our study of the imprint of a thermonuclear explosion on the SNR it produces, that we started with a delayed-detonation model of a Chandrasekhar-mass white dwarf. Here we compare two different types of explosion models, each with two variants: two delayed detonation models (N100ddt, N5ddt) and two pure deflagration models (N100def, N5def), where the N number parametrizes the ignition. The output of each SN simulation is used as input of a SNR simulation carried on until 500 yr after the explosion. While all SNR models become more spherical over time and overall display the theoretical structure expected for a young SNR, clear differences are visible amongst the models, depending on the geometry of the ignition and on the presence or not of detonation fronts. Compared to N100 models, N5 models have a strong dipole component, and produce asymmetric remnants. N5def produces a regular-looking, but offset remnant, while N5ddt produces a two-sided remnant. Pure deflagration models exhibit specific traits: a central over-density, because of the incomplete explosion, and a network of seam lines across the surface, boundaries between burning cells. Signatures from the SN dominate the morphology of the SNR up to 100 yr to 300 yr after the explosion, depending on the model, and are still measurable at 500 yr, which may provide a way of testing explosion models.
We analyze the X-Ray emission from the supernova remnant DEM L71 using the Smoothed Particle Inference (SPI) technique. The high Fe abundance found appears to confirm the Type Ia origin. Our method allows us to separate the material ejected in the su pernova explosion from the material swept-up by the supernova shock wave. We are able to calculate the total mass of this swept-up material to be about 228 $pm$ 23 M$_{odot}$. We plot the posterior distribution for the number density parameter, and create a map of the density structure within the remnant. While the observed density shows substantial variations, we find our results are generally consistent with a two-dimensional hydrodynamical model of the remnant that we have run. Assuming the ejected material arises from a Type Ia explosion, with no hydrogen present, we use the predicted yields from Type Ia models available in the literature to characterize the emitting gas. We find that the abundance of various elements match those predicted by deflagration to detonation transition (DDT) models. Our results, compatible with the Type Ia scenario, highlight the complexity of the remnant and the nature of the surrounding medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا