ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Spatial Distribution of the Intergalactic Medium

346   0   0.0 ( 0 )
 نشر من قبل Patrick Petitjean
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Patrick Petitjean




اسأل ChatGPT حول البحث

Very recently a new inversion method has been developped to analyze the intergalactic medium seen in absorption in quasar spectra (the so-called Lyman-alpha forest). This method is applied to recover the temperature of the gas and the underlying density field. Using constraints from the Lyman-beta forest, it is possible to recover this field up to over-densities delta=10. By inverting the HI and CIV absorptions together it has been shown that the CIV/HI ratio varies through the profile of strong lines, beeing larger in the wings. The method can be applied to reconstruct the 3D density field from multiple lines of sight and is shown to give good results up to mean separations of 3 arcmin. Results from a survey of QSO pairs performed with HST/STIS and VLT/UVES-FORS are summarized.

قيم البحث

اقرأ أيضاً

We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalact ic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{ u} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{ u} = 0.6$ eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{ u} < 0.9$ eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.
We study supernova-driven galactic outflows as a mechanism for injecting turbulence in the intergalactic medium (IGM) far from galaxies. To this aim we follow the evolution of a 10^13 Msun galaxy along its merger tree, with carefully calibrated presc riptions for star formation and wind efficiencies. At z~3 the majority of the bubbles around galaxies are old (ages >1Gyr), i.e. they contain metals expelled by their progenitors at earlier times; their filling factor increases with time reaching about 10% at z<2. The energy deposited by these expanding shocks in the IGM is predominantly in kinetic form (mean energy density of 1 mu eV cm^-3, about 2-3 x the thermal one), which is rapidly converted in disordered motions by instabilities, finally resulting in a fully developed turbulent spectrum whose evolution is followed through a spectral transfer function approach. The derived mean IGM turbulent Doppler parameter, b_t, peaks at z~1 at about 1.5 km/s with maximum b_t = 25 km/s. The shape of the b_t distribution does not significantly evolve with redshift but undergoes a continuous shift towards lower b_t values with time, as a result of bubble aging. We find also a clear trend of decreasing b_t with N_HI and a more complex dependence on R_s resulting from the age spread of the bubbles. We have attempted a preliminary comparison with the data, hampered by the scarcity of the latter and by the challenge provided by the subtraction of peculiar and thermal motions. Finally we comment on the implications of turbulence for various cosmological studies.
The low-redshift Ly-alpha forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our rec ent Hubble Space Telescope (HST) observations and interpretation of low-z Ly-alpha clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Omega-baryon. Our HST/GHRS detections of 70 Ly-alpha absorbers with N_HI > 10^12.6 cm-2 along 11 sightlines covering pathlength Delta(cz) = 114,000 km/s show f(>N_HI) ~ N_HI^{-0.63 +- 0.04} and a line frequency dN/dz = 200 +- 40 for N_HI > 10^12.6 cm-2 (one every 1500 km/s of redshift). A group of strong absorbers toward PKS 2155-304 may be associated with gas (400-800) h_75^-1 kpc from 4 large galaxies, with low metallicity (< 0.003 solar) and D/H < 2 x 10^-4. At low-z, we derive a metagalactic ionizing radiation field from AGN of J_0 = 1.3^{+0.8 -0.5} x 10^-23 ergs/cm2/s/Hz/sr and a Ly-alpha-forest baryon density Omega-baryon = (0.008 +- 0.004) h_75^-1 [J_-23 N_14 b_100]^{1/2} For clouds of characteristic size b = (100 kpc)b_100.
We use adaptive mesh refinement cosmological simulations to study the spatial distribution and covering fraction of OVI absorption in the circumgalactic medium (CGM) as a function of projected virial radius and azimuthal angle. We compare these simul ations to an observed sample of 53 galaxies from the Multiphase Galaxy Halos Survey. Using Mockspec, an absorption line analysis pipeline, we generate synthetic quasar absorption line observations of the simulated CGM. To best emulate observations, we studied the averaged properties of 15,000 mock samples each of 53 sightlines having a distribution of $D/R_{vir}$ and sightline orientation statistically consistent with the observations. We find that the OVI covering fraction obtained for the simulated galaxies agrees well with the observed value for the inner halo ($D/R_{vir} leq 0.375$) and is within $1.1sigma$ in the outer halo ($D/R_{vir} > 0.75$), but is underproduced within $0.375 < D/R_{vir} leq 0.75$. The observed bimodal distribution of OVI covering fraction with azimuthal angle, showing higher frequency of absorption along the projected major and minor axes of galaxies, is not reproduced in the simulations. Further analysis reveals the spatial-kinematic distribution of OVI absorbing gas is dominated by outflows in the inner halo mixed with a inflowing gas that originates from further out in the halo. Though the CGM of the individual simulated galaxies exhibit spatial structure, the flat azimuthal distribution occurs because the individual simulated galaxies do not develop a CGM structure that is universal from galaxy to galaxy.
Baryonic feedback can significantly modify the spatial distribution of matter on small scales and create a bulk relative velocity between the dominant cold dark matter and the hot gas. We study the consequences of such bulk motions using two high res olution hydrodynamic simulations, one with no feedback and one with very strong feedback. We find that relative velocities of order $100 kms$ are produced in the strong feedback simulation whereas it is much smaller when there is no feedback. Such relative motions induce dipole distortions to the gas, which we quantify by computing the dipole correlation function. We find halo coordinates and velocities are systematically changed in the direction of the relative velocity. Finally, we discuss potential to observe the relative velocity via large scale structure, Sunyaev-Zeldovich and line emission measurements. Given the nonlinear nature of this effect, it should next be studied in simulations with different feedback implementations/strengths to determine the available model space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا