ﻻ يوجد ملخص باللغة العربية
We present the corrections to the fermion propagator, to second order in the lattice spacing, O(a^2), in 1-loop perturbation theory. The fermions are described by the clover action and for the gluons we use a 3-parameter family of Symanzik improved actions. Our calculation has been carried out in a general covariant gauge. The results are provided as a polynomial of the clover parameter, and are tabulated for 10 popular sets of the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). We also study the O(a^2) corrections to matrix elements of fermion bilinear operators that have the form $barPsiGammaPsi$, where $Gamma$ denotes all possible distinct products of Dirac matrices. These correction terms are essential ingredients for improving, to O(a^2), the matrix elements of the fermion operators. Our results are applicable also to the case of twisted mass fermions. A longer write-up of this work, including non-perturbative results, is in preparation together with V. Gimenez, V. Lubicz and D. Palao.
We compute the Landau gauge quark propagator from lattice QCD with two flavors of dynamical O(a)-improved Wilson fermions. The calculation is carried out with lattice spacings ranging from 0.06 fm to 0.08 fm, with quark masses corresponding to pion m
We present results on the nucleon electromagnetic form factors from Lattice QCD at momentum transfer up to about $12$~GeV$^2$. We analyze two gauge ensembles with the Wilson-clover fermion action, a lattice spacing of $aapprox 0.09$~fm and pion masse
We present a summary of results of the joint CP-PACS and JLQCD project toward a 2+1 flavor full QCD simulation with the O(a)-improved Wilson quark formalism and the Iwasaki gauge action. Configurations were generated during 2002-2005 at three lattice
We briefly describe some of our recent results for the mass spectrum and matrix elements using $O(a)$ improved fermions for quenched QCD. Where possible a comparison is made between improved and Wilson fermions.
We present a preliminary study of the pion, kaon and D-meson masses and decay constants in isosymmetric QCD, as well as a preliminary result for the light-quark renormalized mass. The analysis is based on the gauge ensembles produced by ETMC with $N_