ﻻ يوجد ملخص باللغة العربية
We show that appropriate superpositions of motional states are a reference frame resource that enables breaking of time -reversal superselection so that two parties lacking knowledge about the others direction of time can still communicate. We identify the time-reversal reference frame resource states and determine the corresponding frameness monotone, which connects time-reversal frameness to entanglement. In contradistinction to other studies of reference frame quantum resources, this is the first analysis that involves an antiunitary rather than unitary representation.
We develop a theory of charge-parity-time (CPT) frameness resources to circumvent CPT-superselection. We construct and quantify such resources for spin~0, $frac{1}{2}$, 1, and Majorana particles and show that quantum information processing is possibl
We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to emph{measure}, as opposed to prepare, entangled stat
A necessary and sufficient condition in order that a (diagonalizable) pseudohermitian operator admits an antilinear symmetry T such that T^{2}=-1 is proven. This result can be used as a quick test on the T-invariance properties of pseudohermitian Ham
The basic aspects of the Aharonov-Bohm effect can be summarized by the remark that wavefunctions become sections of a line bundle with a flat connection (that is, a flat potential). Passing at the level of quantum field theory in curved spacetimes, w
For decades, researchers have sought to understand how the irreversibility of the surrounding world emerges from the seemingly time symmetric, fundamental laws of physics. Quantum mechanics conjectured a clue that final irreversibility is set by the