ﻻ يوجد ملخص باللغة العربية
For decades, researchers have sought to understand how the irreversibility of the surrounding world emerges from the seemingly time symmetric, fundamental laws of physics. Quantum mechanics conjectured a clue that final irreversibility is set by the measurement procedure and that the time reversal requires complex conjugation of the wave function, which is overly complex to spontaneously appear in nature. Building on this Landau-Wigner conjecture, it became possible to demonstrate that time reversal is exponentially improbable in a virgin nature and to design an algorithm artificially reversing a time arrow for a given quantum state on the IBM quantum computer. However, the implemented arrow-of-time reversal embraced only the known states initially disentangled from the thermodynamic reservoir. Here we develop a procedure for reversing the temporal evolution of an arbitrary unknown quantum state. This opens the route for general universal algorithms sending temporal evolution of an arbitrary system backwards in time.
Rare earth ions have exceptionally long coherence times, making them an excellent candidate for quantum information processing. A key part of this processing is quantum state transfer. We show that perfect state transfer can be achieved by time rever
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance (NMR) setup and employing geometric discord, we evaluate the quantum correlations of a state witho
A common objective for quantum control is to force a quantum system, initially in an unknown state, into a particular target subspace. We show that if the subspace is required to be a decoherence-free subspace of dimension greater than 1, then such c
Quantum teleportation provides a disembodied way to transfer an unknown quantum state from one quantum system to another. However, all teleportation experiments to date are limited to cases where the target quantum system contains no prior quantum in
We demonstrate the ability to control the spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric truncated exponential. The experiment is enabled by a qubit coup