ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency-dependent reflection of spin waves from a magnetic inhomogeneity induced by a surface DC-current

142   0   0.0 ( 0 )
 نشر من قبل Timo Neumann
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reflectivity of a highly localized magnetic inhomogeneity is experimentally studied. The inhomogeneity is created by a dc-current carrying wire placed on the surface of a ferrite film. The reflection of propagating dipole-dominated spin-wave pulses is found to be strongly dependent on the spin-wave frequency if the current locally increases the magnetic field. In the opposite case the frequency dependence is negligible.



قيم البحث

اقرأ أيضاً

Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the dynamics of nanomagnets. A peculiar consequence of this spin-torque, the ability to induce persistent oscillations of a nanomagnet by applying a dc current, has previously been reported only for spatially uniform nanomagnets. Here we demonstrate that a quintessentially nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized dc current. Comparison to micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz, making these highly compact spin-torque vortex oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.
When an oscillating line source is placed in front of a special mirror consisting of an array of flat uniformly spaced ferrite rods, half of the image disappeared at some frequency. We believe that this comes from the coupling to photonic states of t he magnetic surface plasmon band. These states exhibit giant circulations that only go in one direction due to time reversal symmetry breaking. Possible applications of this rectifying reflection include a robust one-way waveguide, a 90 degree beam bender and a beam splitter, which are shown to work even in the deep subwavelength scale.
We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were norm ally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.
The electromagnetic field on the metal surface launched by a subwavelength slit is analytically studied, for the case when the fundamental mode inside the slit has a wavevector component along the slit axis (conical mount). Both near-field and far-fi eld regions are discussed, and the role of surface plasmon-polaritons and Norton waves is revealed. It is shown that the distance from the slit at which NW are more intense than surface plasmons decrease with parallel wavevector, which could help experimental studies on Norton waves. Additionally, it is found that the s-polarization component, while present for any non-zero parallel wavevector, only weakly contributes to the NWs.
156 - Stavros Komineas 2012
A vortex-antivortex (VA) dipole may be generated due to a spin-polarized current flowing through a nano-aperture in a magnetic element. We study the vortex dipole dynamics using the Landau-Lifshitz equation in the presence of an in-plane applied magn etic field and a Slonczewski spin-torque term with in-plane polarization. We establish that the vortex dipole is set in steady state rotational motion. The frequency of rotation is due to two independent forces: the interaction between the two vortices and the external magnetic field. The nonzero skyrmion number of the dipole is responsible for both forces giving rise to rotational dynamics. The spin-torque acts to stabilize the vortex dipole motion at a definite vortex-antivortex separation distance. We give analytical and numerical results for the angular frequency of rotation and VA dipole features as functions of the parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا