ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum reflection of atoms from a solid surface at normal incidence

124   0   0.0 ( 0 )
 نشر من قبل Thomas A. Pasquini Jr
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.

قيم البحث

اقرأ أيضاً

48 - M. Varela 2004
The ability to localize, identify and measure the electronic environment of individual atoms will provide fundamental insights into many issues in materials science, physics and nanotechnology. We demonstrate, using an aberration-corrected scanning t ransmission microscope, the spectroscopic imaging of single La atoms inside CaTiO3. Dynamical simulations confirm that the spectroscopic information is spatially confined around the scattering atom. Furthermore we show how the depth of the atom within the crystal may be estimated.
Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The projectile-surface potential is obtained from an accurate DFT calculation, which includes polarization and surface relaxation. For the description of the collision process we employ the surface eikonal approximation, which takes into account quantum interference between different projectile paths. The dependence of projectile spectra on the parallel and perpendicular incident energies is experimentally and theoretically analyzed, determining the range of applicability of the proposed model.
We study the interaction of electromagnetic (EM) radiation with single-layer graphene and a stack of parallel graphene sheets at arbitrary angles of incidence. It is found that the behavior is qualitatively different for transverse magnetic (or p-pol arized) and transverse electric (or s-polarized) waves. In particular, the absorbance of single-layer graphene attains minimum (maximum) for p (s) polarization, at the angle of total internal reflection when the light comes from a medium with a higher dielectric constant. In the case of equal dielectric constants of the media above and beneath graphene, for grazing incidence graphene is almost 100% transparent to p-polarized waves and acts as a tunable mirror for the s-polarization. These effects are enhanced for the stack of graphene sheets, so the system can work as a broad band polarizer. It is shown further that a periodic stack of graphene layers has the properties of an one-dimensional photonic crystal, with gaps (or stop--bands) at certain frequencies. When an incident EM wave is reflected from this photonic crystal, the tunability of the graphene conductivity renders the possibility of controlling the gaps, and the structure can operate as a tunable spectral--selective mirror.
We examine theoretically the intersubband transitions induced by laser beams of light with orbital angular momentum (twisted light) in semiconductor quantum wells at normal incidence. These transitions become possible in the absence of gratings thank s to the fact that collimated laser beams present a component of the lights electric field in the propagation direction. We derive the matrix elements of the light-matter interaction for a Bessel-type twisted-light beam represented by its vector potential in the paraxial approximation. Then, we consider the dynamics of photo-excited electrons making intersubband transitions between the first and second subbands of a standard semiconductor quantum well. Finally, we analyze the light-matter matrix elements in order to evaluate which transitions are more favorable for given orbital angular momentum of the light beam in the case of small semiconductor structures.
The reflectivity of a highly localized magnetic inhomogeneity is experimentally studied. The inhomogeneity is created by a dc-current carrying wire placed on the surface of a ferrite film. The reflection of propagating dipole-dominated spin-wave puls es is found to be strongly dependent on the spin-wave frequency if the current locally increases the magnetic field. In the opposite case the frequency dependence is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا