ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment of galaxy spins in the vicinity of voids

14   0   0.0 ( 0 )
 نشر من قبل Anze Slosar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee & Pen to describe the strength of such an alignment, we find that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries.

قيم البحث

اقرأ أيضاً

Halos and galaxies acquire their angular momentum during the collapse of surrounding large-scale structure. This process imprints alignments between galaxy spins and nearby filaments and sheets. Low mass halos grow by accretion onto filaments, aligni ng their spins with the filaments, whereas high mass halos grow by mergers along filaments, generating spins perpendicular to the filament. We search for this alignment signal using filaments identified with the Cosmic Web Reconstruction algorithm applied to the Sloan Digital Sky Survey Main Galaxy Sample and galaxy spins from the MaNGA integral-field unit survey. MaNGA produces a map of the galaxys rotational velocity, allowing direct measurement of the galaxys spin direction, or unit angular momentum vector projected onto the sky. We find no evidence for alignment between galaxy spins and filament directions. We do find hints of a mass-dependent alignment signal, which is in 2-3$sigma$ tension with the mass-dependent alignment signal in the MassiveBlack-II and Illustris hydrodynamical simulations. However, the tension vanishes when galaxy spin is measured using the H$alpha$ emission line velocity rather than stellar velocity. Finally, in simulations we find that the mass-dependent transition from aligned to anti-aligned dark matter halo spins is not necessarily present in stellar spins: we find a stellar spin transition in Illustris but not in MassiveBlack-II, highlighting the sensitivity of spin-filament alignments to feedback prescriptions and subgrid physics.
It is well known that the usual formulation of Elko spinor fields leads to a subtle Lorentz symmetry break encoded in the spin sums. Recently it was proposed a redefinition in the dual structure, along with a given mathematical device, which eliminat e the Lorentz breaking term in the spin sums. In this work we delve into the analysis of this mathematical device providing a solid framework to the used method.
We report the results of an extensive FUSE study of high velocity OVI absorption along 102 complete sight lines through the Galactic halo. The high velocity OVI traces a variety of phenomena, including tidal interactions with the Magellanic Clouds, a ccretion of gas, outflow from the Galactic disk, warm/hot gas interactions in a highly extended Galactic corona, and intergalactic gas in the Local Group. We identify 85 high velocity OVI features at velocities of -500 < v(LSR) < +500 km/s along 59 of the 102 sight lines. Approximately 60% of the sky (and perhaps as much as 85%) is covered by high velocity H+ associated with the high velocity OVI. Some of the OVI is associated with known high velocity HI structures (e.g., the Magellanic Stream, Complexes A and C), while some OVI features have no counterpart in HI 21cm emission. The smaller dispersion in the OVI velocities in the GSR and LGSR reference frames compared to the LSR is necessary (but not conclusive) evidence that some of the clouds are extragalactic. Most of the OVI cannot be produced by photoionization, even if the gas is irradiated by extragalactic background radiation. Collisions in hot gas are the primary OVI ionization mechanism. We favor production of some of the OVI at the boundaries between warm clouds and a highly extended [R > 70 kpc], hot [T > 10^6 K], low-density [n < 10^-4 cm^-3] Galactic corona or Local Group medium. A hot Galactic corona or Local Group medium and the prevalence of high velocity OVI are consistent with predictions of galaxy formation scenarios. Distinguishing between the various phenomena producing high velocity OVI will require continuing studies of the distances, kinematics, elemental abundances, and physical states of the different types of high velocity OVI features found in this study. (abbreviated)
Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Halpha, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.
Using the Millennium N-body simulation we explore how the shape and angular momentum of galaxy dark matter haloes surrounding the largest cosmological voids are oriented. We find that the major and intermediate axes of the haloes tend to lie parallel to the surface of the voids, whereas the minor axis points preferentially in the radial direction. We have quantified the strength of these alignments at different radial distances from the void centres. The effect of these orientations is still detected at distances as large as 2.2 R_void from the void centre. Taking a subsample of haloes expected to contain disc-dominated galaxies at their centres we detect, at the 99.9% confidence level, a signal that the angular momentum of those haloes tends to lie parallel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal is only detected in shells at the void surface (1<R<1.07 R_void) and disappears at larger distances. This signal, together with the similar alignment observed using real spiral galaxies (Trujillo, Carretero & Patiri 2006), strongly supports the prediction of the Tidal Torque theory that both dark matter haloes and baryonic matter have acquired, conjointly, their angular momentum before the moment of turnaround.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا