ترغب بنشر مسار تعليمي؟ اضغط هنا

The orientation of galaxy dark matter haloes around cosmic voids

31   0   0.0 ( 0 )
 نشر من قبل Ignacio Trujillo
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Millennium N-body simulation we explore how the shape and angular momentum of galaxy dark matter haloes surrounding the largest cosmological voids are oriented. We find that the major and intermediate axes of the haloes tend to lie parallel to the surface of the voids, whereas the minor axis points preferentially in the radial direction. We have quantified the strength of these alignments at different radial distances from the void centres. The effect of these orientations is still detected at distances as large as 2.2 R_void from the void centre. Taking a subsample of haloes expected to contain disc-dominated galaxies at their centres we detect, at the 99.9% confidence level, a signal that the angular momentum of those haloes tends to lie parallel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal is only detected in shells at the void surface (1<R<1.07 R_void) and disappears at larger distances. This signal, together with the similar alignment observed using real spiral galaxies (Trujillo, Carretero & Patiri 2006), strongly supports the prediction of the Tidal Torque theory that both dark matter haloes and baryonic matter have acquired, conjointly, their angular momentum before the moment of turnaround.

قيم البحث

اقرأ أيضاً

We use the halo occupation distribution (HOD) framework to characterise the predictions from two independent galaxy formation models for the galactic content of dark matter haloes and its evolution with redshift. Our galaxy samples correspond to a ra nge of fixed number densities defined by stellar mass and span $0 le z le 3$. We find remarkable similarities between the model predictions. Differences arise at low galaxy number densities which are sensitive to the treatment of heating of the hot halo by active galactic nuclei. The evolution of the form of the HOD can be described in a relatively simple way, and we model each HOD parameter using its value at $z=0$ and an additional evolutionary parameter. In particular, we find that the ratio between the characteristic halo masses for hosting central and satellite galaxies can serve as a sensitive diagnostic for galaxy evolution models. Our results can be used to test and develop empirical studies of galaxy evolution and can facilitate the construction of mock galaxy catalogues for future surveys.
Clusters, filaments, sheets and voids are the building blocks of the cosmic web. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field, the other uses the halo distributions directly. We apply both techniques to one high resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament-halos with masses <= 10^{13} M_sun/h are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strengths for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strengths as a function of distance to the most massive node halo indicate that there is a transit large scale environment impact: from the 2-D collapse phase of the filament to the 3-D collapse phase of the cluster/node halo at small separation. Overall, the two algorithms for filament/sheet identification investigated here agree well with each other. The method based on halos alone can be easily adapted for use with observational data sets.
The intrinsic alignments of galaxies, i.e., the correlation between galaxy shapes and their environment, are a major source of contamination for weak gravitational lensing surveys. Most studies of intrinsic alignments have so far focused on measuring and modelling the correlations of luminous red galaxies with galaxy positions or the filaments of the cosmic web. In this work, we investigate alignments around cosmic voids. We measure the intrinsic alignments of luminous red galaxies detected by the Sloan Digital Sky Survey around a sample of voids constructed from those same tracers and with radii in the ranges: $[20-30; 30-40; 40-50]$ $h^{-1}$ Mpc and in the redshift range $z=0.4-0.8$. We present fits to the measurements based on a linear model at large scales, and on a new model based on the void density profile inside the void and in its neighbourhood. We constrain the free scaling amplitude of our model at small scales, finding no significant alignment at $1sigma$ for either sample. We observe a deviation from the null hypothesis, at large scales, of 2$sigma$ for voids with radii between 20 and 30 $h^{-1}$ Mpc, and 1.5 $sigma$ for voids with radii between 30 and 40 $h^{-1}$ Mpc and constrain the amplitude of the model on these scales. We find no significant deviation at 1$sigma$ for larger voids. Our work is a first attempt at detecting intrinsic alignments around voids and provides a useful framework for their mitigation in future void lensing studies.
We study the evolution of the cross-correlation between voids and the mass density field - i.e. of void profiles. We show that approaches based on the spherical model alone miss an important contribution to the evolution on large scales of most inter est to cosmology: they fail to capture the well-known fact that the large-scale bias factor of conserved tracers evolves. We also show that the operations of evolution and averaging do not commute, but this difference is only significant within about two effective radii. We show how to include a term which accounts for the evolution of bias, which is directly related to the fact that voids move. The void motions are approximately independent of void size, so they are more significant for smaller voids that are typically more numerous. This term also contributes to void-matter pairwise velocities: including it is necessary for modeling the typical outflow speeds around voids. It is, therefore, important for void redshift space distortions. Finally, we show that the excursion set peaks/troughs approach provides a useful, but not perfect framework for describing void profiles and their evolution.
Virial mass is used as an estimator for the mass of a dark matter halo. However, the commonly used constant overdensity criterion does not reflect the dynamical structure of haloes. Here we analyze dark matter cosmological simulations in order to obt ain properties of haloes of different masses focusing on the size of the region with zero mean radial velocity. Dark matter inside this region is stationary, and thus the mass of this region is a much better approximation for the virial mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا