ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining Quasar Black Hole Mass Functions from their Broad Emission Lines: Application to the Bright Quasar Survey

55   0   0.0 ( 0 )
 نشر من قبل Brandon C. Kelly
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a Bayesian approach to estimating quasar black hole mass functions (BHMF) when using the broad emission lines to estimate black hole mass. We show how using the broad line mass estimates in combination with statistical techniques developed for luminosity function estimation leads to statistically biased results. We derive the likelihood function for the BHMF based on the broad line mass estimates, and derive the posterior distribution for the BHMF, given the observed data. We develop our statistical approach for a flexible model where the BHMF is modelled as a mixture of Gaussian functions. Statistical inference is performed using markov chain monte carlo (MCMC) methods. Our method has the advantage that it is able to constrain the BHMF even beyond the survey detection limits at the adopted confidence level, accounts for measurement errors and the intrinsic uncertainty in broad line mass estimates, and provides a natural way of estimating the probability distribution of any quantities derived from the BHMF. We conclude by using our method to estimate the local active BHMF using the z < 0.5 Bright Quasar Survey sources. At z = 0.2, the quasar BHMF falls off approximately as a power law with slope ~ 2 for M_{BH} > 10^8. Our analysis implies that z < 0.5 broad line quasars have a typical Eddington ratio of ~ 0.4 and a dispersion in Eddington ratio of < 0.5 dex (abridged).



قيم البحث

اقرأ أيضاً

A generalized approach to reverberation mapping (RM) is presented, which is applicable to broad- and narrow-band photometric data, as well as to spectroscopic observations. It is based on multivariate correlation analysis techniques and, in its prese nt implementation, is able to identify reverberating signals across the accretion disk and the broad line region (BLR) of active galactic nuclei (AGN). Statistical tests are defined to assess the significance of time-delay measurements using this approach, and the limitations of the adopted formalism are discussed. It is shown how additional constraints on some of the parameters of the problem may be incorporated into the analysis thereby leading to improved results. When applied to a sample of 14 Seyfert 1 galaxies having good-quality high-cadence photometric data, accretion disk scales and BLR sizes are simultaneously determined, on a case-by-case basis, in most objects. The BLR scales deduced here are in good agreement with the findings of independent spectroscopic RM campaigns. Implications for the photometric RM of AGN interiors in the era of large surveys are discussed.
The broad emission lines (BELs) of quasars and active galactic nuclei (AGNs) are important diagnostics of the relative abundances and overall metallicity in the gas. Here we present new theoretical predictions for several UV BELs. We focus specifical ly on the relative nitrogen abundance as a metallicity indicator, based on the expected secondary enrichment of nitrogen at metallicities Z > 0.2 Z_o. Among the lines we consider, N III] 1750/O III] 1664, N V 1240/(C IV 1549 + O VI 1034) and N V/He II 1640 are the most robust diagnostics. We argue, in particular, that the average N V BEL is not dominated by scattered Ly-alpha photons from a broad absorption line wind. We then compare our calculated line ratios with observations from the literature. The results support earlier claims that the gas-phase metallicities near quasars are typically near or several times above the solar value. We conclude that quasar activity is preceded by, or coeval with, an episode of rapid and extensive star formation in the surrounding galactic (or proto-galactic) nuclei. Chemical evolution models of these environments suggest that, to reach Z > Z_o in well-mixed interstellar gas, the star formation must have begun > 10^8 yr before the observed quasar activity.
529 - Scott Tremaine 2014
The broad emission lines commonly seen in quasar spectra have velocity widths of a few per cent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of t he broad H-beta line in the quasar rest frame (determined from the core component of the [OIII] line) for over 20,000 quasars from the Sloan Digital Sky Survey DR7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ~30-45 degrees, consistent with simple AGN unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.
60 - {DJ}. Savic 2018
The innermost regions in active galactic nuclei (AGNs) were not being spatially resolved so far but spectropolarimetry can provide us insight about their hidden physics and the geometry. From spectropolarimetric observations in broad emission lines a nd assuming equatorial scattering as a dominant polarization mechanism, it is possible to estimate the mass of supermassive black holes (SMBHs). We explore the possibilities and limits and to put constraints on the usage of the method for determining SMBH masses using polarization in broad emission lines by providing more in-depth theoretical modeling. Methods. We use the Monte Carlo radiative transfer code STOKES for exploring polarization of Type 1 AGNs. We model equatorial scattering using flared-disk geometry for a set of different SMBH masses assuming Thomson scattering. In addition to the Keplerian motion in the BLR, we also consider cases of additional radial inflows and vertical outflows. We model the profiles of polarization plane position angle, degree of polarization and total unpolarized line for different BLR geometries and different SMBH masses. Our modeling confirms that the method can be widely used for Type-1 AGNs when viewing inclinations are between 25 and 45 degrees. We show that the distance between the BLR and scattering region (SR) has a significant impact on the mass estimates and the best mass estimates are when the SR is situated at the distance 1.5-2.5 times larger than the outer BLR radius. Our models show that if Keplerian motion can be traced through the polarized line profile, then the direct estimation of the mass of the SMBH can be performed. When radial inflows or vertical outflows are present in the BLR, this method can be applied if velocities of the inflow/outflow are less than 500 km/s. We find that models for NGC4051, NGC4151, 3C273 and PG0844+349 are in good agreements with observations.
We present a new method for supermassive black hole (SMBH) mass measurements in Type 1 active galactic nuclei (AGN) using polarization angle across broad lines. This method gives measured masses which are in a good agreement with reverberation estima tes. Additionally, we explore the possibilities and limits of this method using the STOKES radiative transfer code taking a dominant Keplerian motion in the broad line region (BLR). We found that this method can be used for the direct SMBH mass estimation in the cases when in addition to the Kepler motion, radial inflows or vertical outflows are present in the BLR. Some advantages of the method are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا