ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole mass measurements in AGN: Polarization in broad emission lines

78   0   0.0 ( 0 )
 نشر من قبل Luka C. Popovic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method for supermassive black hole (SMBH) mass measurements in Type 1 active galactic nuclei (AGN) using polarization angle across broad lines. This method gives measured masses which are in a good agreement with reverberation estimates. Additionally, we explore the possibilities and limits of this method using the STOKES radiative transfer code taking a dominant Keplerian motion in the broad line region (BLR). We found that this method can be used for the direct SMBH mass estimation in the cases when in addition to the Kepler motion, radial inflows or vertical outflows are present in the BLR. Some advantages of the method are discussed.



قيم البحث

اقرأ أيضاً

60 - {DJ}. Savic 2018
The innermost regions in active galactic nuclei (AGNs) were not being spatially resolved so far but spectropolarimetry can provide us insight about their hidden physics and the geometry. From spectropolarimetric observations in broad emission lines a nd assuming equatorial scattering as a dominant polarization mechanism, it is possible to estimate the mass of supermassive black holes (SMBHs). We explore the possibilities and limits and to put constraints on the usage of the method for determining SMBH masses using polarization in broad emission lines by providing more in-depth theoretical modeling. Methods. We use the Monte Carlo radiative transfer code STOKES for exploring polarization of Type 1 AGNs. We model equatorial scattering using flared-disk geometry for a set of different SMBH masses assuming Thomson scattering. In addition to the Keplerian motion in the BLR, we also consider cases of additional radial inflows and vertical outflows. We model the profiles of polarization plane position angle, degree of polarization and total unpolarized line for different BLR geometries and different SMBH masses. Our modeling confirms that the method can be widely used for Type-1 AGNs when viewing inclinations are between 25 and 45 degrees. We show that the distance between the BLR and scattering region (SR) has a significant impact on the mass estimates and the best mass estimates are when the SR is situated at the distance 1.5-2.5 times larger than the outer BLR radius. Our models show that if Keplerian motion can be traced through the polarized line profile, then the direct estimation of the mass of the SMBH can be performed. When radial inflows or vertical outflows are present in the BLR, this method can be applied if velocities of the inflow/outflow are less than 500 km/s. We find that models for NGC4051, NGC4151, 3C273 and PG0844+349 are in good agreements with observations.
The STOKES Monte Carlo radiative transfer code has been extended to model the velocity dependence of the polarization of emission lines. We use STOKES to present improved modelling of the velocity-dependent polarization of broad emission lines in act ive galactic nuclei. We confirm that off-axis continuum emission can produce observed velocity dependencies of both the degree and position angle of polarization. The characteristic features are a dip in the percentage polarization and an S-shaped swing in the position angle of the polarization across the line profile. Some differences between our STOKES results and previous modelling of polarization due to off-axis emission are noted. In particular we find that the presence of an offset between the maximum in line flux and the dip in the percentage of polarization or the central velocity of the swing in position angle does not necessarily imply that the scattering material is moving radially. Our model is an alternative scenario to the equatorial scattering disk described by Smith et al. (2005). We discuss strategies to discriminate between both interpretations and to constrain their relative contributions to the observed velocity-resolved line and polarization.
233 - Ismael Botti 2008
In this contribution we briefly review the reverberation mapping technique and its results for low and intermidiate luminosity AGNs. Then we present a monitoring campaign of high-luminosity high-redshift quasars which will extend these results by two orders of magnitude, probing the broad-line region size and black hole (BH) mass of luminous AGN at redshift ~2-3.
We propose a new method of estimation of the black hole masses in AGN based on the normalized excess variance, sigma_{nxs}^2. We derive a relation between sigma_{nxs}^2, the length of the observation, T, the light curve bin size, Delta t, and the bla ck hole mass, assuming that (i) the power spectrum above the high frequency break, f_{bf}, has a slope of -2, (ii) the high frequency break scales with black hole mass, (iii) the power spectrum amplitude (in frequency x power space) is universal and (iv) sigma_{nxs}^2 is calculated from observations of length T < 1/f_{bf}. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the Mbh-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass but the use of the normalized excess variance has the big advantage of being applicable to relatively low quality data.
595 - Shi-Yan Zhang 2008
Type II AGNs with polarimetric broad emission line provided strong evidence for the orientation-based unified model for AGNs. We want to investigate whether the polarimetric broad emission line in type II AGNs can be used to calculate their central s upermassive black hole (SMBH) masses, like that for type I AGNs. We collected 12 type II AGNs with polarimetric broad emission line width from the literatures, and calculated their central black hole masses from the polarimetric broad line width and the isotropic oiii luminosity. We also calculate the mass from stellar velocity dispersion, $sigma_*$, with the $mbh-sigma_*$ relation.We find that: (1) the black hole masses derived from the polarimetric broad line width is averagely larger than that from the $mbh- sigma_*$ relation by about 0.6 dex, (2) If these type II AGNs follow $mbh-sigma_*$ relation, we find that the random velocity cant not be omitted and is comparable with the BLRs Keplerian velocity. It is consistent with the scenery of large outflow from the accretion disk suggested by Yong et al.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا