ﻻ يوجد ملخص باللغة العربية
Recent imaging campaigns indicate the likely existence of massive planets (~ 1-10 MJ) on ~1000 year orbits about a few percent of stars. Such objects are not easily explained in most current planet formation models. In this Letter we use ensembles of 100 N-body simulations to evaluate the potential for planet scattering during relaxation of dynamically active systems to explain the population of giant planets with projected separations up to a few 100 AU. We find that such a mechanism could indeed be at play, and that statistical samples of long period planets could place interesting constraints on early stage planet formation scenarios. Results from direct imaging and microlensing surveys are complementary probes of this dynamical relaxation process.
We re-examine the statistical confirmation of small long-period Kepler planet candidates in light of recent improvements in our understanding of the occurrence of systematic false alarms in this regime. Using the final Data Release 25 (DR25) Kepler p
Following the suggestion of Black (1997) that some massive extrasolar planets may be associated with the tail of the distribution of stellar companions, we investigate a scenario in which 5 < N < 100 planetary mass objects are assumed to form rapidly
During their formation, emerging protoplanets tidally interact with their natal disks. Proto-gas-giant planets, with Hills radius larger than the disk thickness, open gaps and quench gas flow in the vicinity of their orbits. It is usually assumed tha
Most planetary discoveries with the K2 and TESS missions are restricted to short periods because of the limited duration of observation. However, the re-observation of sky area allows for the detection of longer period planets. We describe new transi
We report the detection of five Jovian mass planets orbiting high metallicity stars. Four of these stars were first observed as part of the N2K program and exhibited low RMS velocity scatter after three consecutive observations. However, follow-up ob