ﻻ يوجد ملخص باللغة العربية
Most planetary discoveries with the K2 and TESS missions are restricted to short periods because of the limited duration of observation. However, the re-observation of sky area allows for the detection of longer period planets. We describe new transits detected in six candidate planetary systems which were observed by multiple K2 mission campaigns. One of these systems is a multiplanet system with four candidate planets; we present new period constraints for two planets in this system. In the other five systems, only one transit is observed in each campaign, and we derive period constraints from this new data. The period distributions are highly multimodal resulting from missed potential transits in the gap between observations. Each peak in the distribution corresponds to transits at an integer harmonic of the two observed transits. We further detail a generalized procedure to constrain the period for planets with multiple observations with intervening gaps. Because long period photometrically discovered planets are rare, these systems are interesting targets for follow-up observations and confirmation. Specifically, all six systems are bright enough (V = 10.4-12.7) to be amenable to radial velocity follow-up. This work serves as a template for period constraints in a host of similar yet-to-be-discovered planets in long baseline, temporally gapped observations conducted by the TESS mission.
We have analyzed data from Campaigns 0-5 of the K2 mission and report 19 ultra-short-period candidate planets with orbital periods of less than 1 day (nine of which have not been previously reported). Planet candidates range in size from 0.7-16 Earth
GY Cnc is a deeply eclipsing cataclysmic variable star with an orbital period of 4.21 hours that has shown several dwarf nova outbursts. The variable was continuously observed by the K2/Kepler satellite with a short cadence in Campaign 5 (C05) for 75
We present the observational results of an L and M band Adaptive Optics (AO) imaging survey of 54 nearby, sunlike stars for extrasolar planets, carried out using the Clio camera on the MMT. We have concentrated more strongly than all other planet ima
We report the discovery of EPIC201702477b, a transiting brown dwarf in a long period (40.73691 +/- 0.00037 day) and eccentric (e=0.2281 +/- 0.0026) orbit. This system was initially reported as a planetary candidate based on two transit events seen in
We recently used near-infrared spectroscopy to improve the characterization of 76 low-mass stars around which K2 had detected 79 candidate transiting planets. Thirty of these worlds were new discoveries that have not previously been published. We cal