ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Dimensional Simulations of Tidally Disrupted Solar-Type Stars and the Observational Signatures of Shock Breakout

244   0   0.0 ( 0 )
 نشر من قبل James Guillochon
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a three-dimensional simulation of a $1 M_{odot}$ solar-type star approaching a $10^{6} M_{odot}$ black hole on a parabolic orbit with a pericenter distance well within the tidal radius. While falling towards the black hole, the star is not only stretched along the orbital direction but even more severely compressed at right angles to the orbit. The overbearing degree of compression achieved shortly after pericenter leads to the production of strong shocks which largely homogenize the temperature profile of the star, resulting in surface temperatures comparable to the initial temperature of the stars core. This phenomenon, which precedes the fallback accretion phase, gives rise to a unique double-peaked X-ray signature that, if detected, may be one of the few observable diagnostics of how stars behave under the influence of strong gravitational fields. If $sim 10^{6} M_{odot}$ black holes were prevalent in small or even dwarf galaxies, the nearest of such flares may be detectable by EXIST from no further away than the Virgo Cluster.



قيم البحث

اقرأ أيضاً

111 - James Guillochon 2016
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star surviv es disruption, we find its magnetic field amplifies by a factor of up to twenty, but see no evidence for the a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.
We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and 20 Msun. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximal Ni and minimal H velocities do not only depend on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities) but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which lead to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a great global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km/s for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 Msun BSG shares these properties (maximum Ni speeds up to ~3500 km/s), the 20 Msun BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km/s) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.
We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that d ebris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The possible radiated energy is up to ~2*10^{52} erg for a 1 Msun star orbiting a 10^6 Msun black hole. We also find that a retrograde (prograde) black hole spin causes the shock-induced circularization timescale to be shorter (longer) than that of a non-spinning black hole in both cooling cases. The circularization timescale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. We also discuss the relationship between our simulations and the parabolic TDEs that are characteristic of most stellar tidal disruptions.
141 - Anthony L. Piro 2009
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou t shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.
In the near future, Parker Solar Probe will put theories about the dynamics and nature of the transition between the solar corona and the solar wind to stringent tests. The most popular mechanism aimed to explain the dynamics of the nascent solar win d, including its heating and acceleration is magnetohydrodynamic (MHD) turbulence. Most of the previous models focus on nonlinear cascade induced by interactions of outgoing Alfven waves and their reflections, ignoring effects that might be related to perpendicular structuring of the solar coronal plasma, despite overwhelming evidence for it. In this paper, for the first time, we analyse through 3D MHD numerical simulations the dynamics of the perpendicularly structured solar corona and solar wind, from the low corona to 15 R_Sun. We find that background structuring has a strong effect on the evolution of MHD turbulence, on much faster time scales than in the perpendicularly homogeneous case. On time scales shorter than nonlinear times, linear effects related to phase mixing result in a 1/f perpendicular energy spectrum. As the turbulent cascade develops, we observe a perpendicular (parallel) energy spectrum with the power law index of -3/2 or -5/3 (-2), a steeper perpendicular magnetic field than velocity spectrum, and a strong build-up of negative residual energy. We conclude that the turbulence is most probably generated by the self-cascade of the driven transverse kink waves, referred to previously as `uniturbulence, which might represent the dominant nonlinear energy cascade channel in the pristine solar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا