ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of Magnetic Fields in Tidally-Disrupted Stars

112   0   0.0 ( 0 )
 نشر من قبل James Guillochon
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James Guillochon




اسأل ChatGPT حول البحث

We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to twenty, but see no evidence for the a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.



قيم البحث

اقرأ أيضاً

We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that d ebris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The possible radiated energy is up to ~2*10^{52} erg for a 1 Msun star orbiting a 10^6 Msun black hole. We also find that a retrograde (prograde) black hole spin causes the shock-induced circularization timescale to be shorter (longer) than that of a non-spinning black hole in both cooling cases. The circularization timescale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. We also discuss the relationship between our simulations and the parabolic TDEs that are characteristic of most stellar tidal disruptions.
We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state for the hot neutron star. Wi th this, we numerically solve the stellar equilibrium equations to find a range of models, including magnetic fields and rotation up to Keplerian velocity. We approximate the equation of state as a barotrope, and discuss the validity of this assumption. For fixed magnetic-field strength, the induced ellipticity increases with temperature; we give quantitative formulae for this. The Keplerian velocity is considerably lower for hotter stars, which may set a de-facto maximum rotation rate for non-recycled NSs well below 1 kHz. Magnetic fields stronger than around $10^{14}$ G have qualitatively similar equilibrium states in both hot and cold neutron stars, with large-scale simple structure and the poloidal field component dominating over the toroidal one; we argue this result may be universal. We show that truncating magnetic-field solutions at low multipoles leads to serious inaccuracies, especially for models with rapid rotation or a strong toroidal-field component.
Atmospheric heavy elements have been observed in more than a quarter of white dwarfs (WDs) at different cooling ages, indicating ongoing accretion of asteroidal material, whilst only a few per cent of the WDs possess a dust disk, and all these WDs ar e accreting metals. Here, assuming that a rubble-pile asteroid is scattered inside a WDs Roche lobe by a planet, we study its tidal disruption and the long-term evolution of the resulting fragments. We find that after a few pericentric passages, the asteroid is shredded into its constituent particles, forming a flat, thin ring. On a timescale of Myr, tens of per cent of the particles are scattered onto the WD. Fragment mutual collisions are most effective for coplanar fragments, and are thus only important in $10^3-10^4$ yr before the orbital coplanarity is broken by the planet. We show that for a rubble pile asteroid with a size frequency distribution of the component particles following that of the near earth objects, it has to be roughly at least 10 km in radius such that enough fragments are generated and $ge10%$ of its mass is lost to mutual collisions. At relative velocities of tens of km/s, such collisions grind down the tidal fragments into smaller and smaller dust grains. The WD radiation forces may shrink those grains orbits, forming a dust disk. Tidal disruption of a monolithic asteroid creates large km-size fragments, and only parent bodies $ge100$ km are able to generate enough fragments for mutual collisions to be significant.
We describe a three-dimensional simulation of a $1 M_{odot}$ solar-type star approaching a $10^{6} M_{odot}$ black hole on a parabolic orbit with a pericenter distance well within the tidal radius. While falling towards the black hole, the star is no t only stretched along the orbital direction but even more severely compressed at right angles to the orbit. The overbearing degree of compression achieved shortly after pericenter leads to the production of strong shocks which largely homogenize the temperature profile of the star, resulting in surface temperatures comparable to the initial temperature of the stars core. This phenomenon, which precedes the fallback accretion phase, gives rise to a unique double-peaked X-ray signature that, if detected, may be one of the few observable diagnostics of how stars behave under the influence of strong gravitational fields. If $sim 10^{6} M_{odot}$ black holes were prevalent in small or even dwarf galaxies, the nearest of such flares may be detectable by EXIST from no further away than the Virgo Cluster.
Non-thermal emission has been detected in WR-stars for many years at long wavelengths spectral range, in general attributed to synchrotron emission. Two key ingredients are needed to explain such emissions, namely magnetic fields and relativistic par ticles. Particles can be accelerated to relativistic speeds by Fermi processes at strong shocks. Therefore, strong synchrotron emission is usually attributed to WR binarity. The magnetic field may also be amplified at shocks, however the actual picture of the magnetic field geometry, intensity, and its role on the acceleration of particles at WR binary systems is still unclear. In this work we discuss the recent developments in MHD modelling of wind-wind collision regions by means of numerical simulations, and the coupled particle acceleration processes related.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا