ترغب بنشر مسار تعليمي؟ اضغط هنا

Doppler Spread Estimation by Subspace Tracking for OFDM Systems

78   0   0.0 ( 0 )
 نشر من قبل Xiaochuan Zhao
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Xiaochuan Zhao




اسأل ChatGPT حول البحث

This paper proposes a novel maximum Doppler spread estimation algorithm for OFDM systems with the comb-type pilot pattern. By tracking the drifting delay subspace of the multipath channel, the time correlation function is measured at a high accuracy, which accordingly improves the estimation accuracy of the maximum Doppler spread considerably.

قيم البحث

اقرأ أيضاً

265 - Xiaochuan Zhao 2008
A novel maximum Doppler spread estimation algorithm for OFDM systems with comb-type pilot pattern is presented in this paper. By tracking the drifting delay subspace of time-varying multipath channels, a Doppler dependent parameter can be accurately measured and further expanded and transformed into a non-linear high-order polynomial equation, from which the maximum Doppler spread is readily solved by resorting to the Newtons method. Its performance is demonstrated by simulations.
Cognitive radios hold tremendous promise for increasing the spectral efficiency of wireless communication systems. In this paper, an adaptive bit allocation algorithm is presented for orthogonal frequency division multiplexing (OFDM) CR systems opera ting in a frequency selective fading environment. The algorithm maximizes the CR system throughput in the presence of narrowband interference, while guaranteeing a BER below a predefined threshold. The effect of imperfect channel estimation on the algorithms performance is also studied.
The fifth generation (5G) wireless standard will support several new use cases and 10 to 100 times the performance of fourth generation (4G) systems. Because of the diverse applications for 5G, flexible solutions which can address conflicting require ments will be needed. In this paper, we propose a solution which enables the use of discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) and OFDM, which address different requirements, using a common reference symbol (RS) design. In this solution, the DFT-s-OFDM symbol contains RSs in the frequency domain that may be shared by a subsequent OFDM symbol. The proposed scheme is generated by puncturing the output of a DFT-spread block and replacing the punctured samples with RSs in frequency. We prove that puncturing the interleaved samples at the output of the DFT-spread operation equivalently introduces a periodic interference to the data symbols at the input of the DFT-spread operation. We show that the interference due to the puncturing can be removed with a low-complexity receiver by exploiting the zeros inserted to certain locations before the DFT-spread block at the transmitter. Simulation results support that the proposed scheme removes the error floor caused by the puncturing and achieves lower peak-to-average-power ratio than OFDM.
116 - Pooria Pakrooh , Arash Amini , 2011
In communication systems, efficient use of the spectrum is an indispensable concern. Recently the use of compressed sensing for the purpose of estimating Orthogonal Frequency Division Multiplexing (OFDM) sparse multipath channels has been proposed to decrease the transmitted overhead in form of the pilot subcarriers which are essential for channel estimation. In this paper, we investigate the problem of deterministic pilot allocation in OFDM systems. The method is based on minimizing the coherence of the submatrix of the unitary Discrete Fourier Transform (DFT) matrix associated with the pilot subcarriers. Unlike the usual case of equidistant pilot subcarriers, we show that non-uniform patterns based on cyclic difference sets are optimal. In cases where there are no difference sets, we perform a greedy search method for finding a suboptimal solution. We also investigate the performance of the recovery methods such as Orthogonal Matching Pursuit (OMP) and Iterative Method with Adaptive Thresholding (IMAT) for estimation of the channel taps.
154 - Amir Leshem , Michal Yemini 2017
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the pha se noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا