ﻻ يوجد ملخص باللغة العربية
A novel maximum Doppler spread estimation algorithm for OFDM systems with comb-type pilot pattern is presented in this paper. By tracking the drifting delay subspace of time-varying multipath channels, a Doppler dependent parameter can be accurately measured and further expanded and transformed into a non-linear high-order polynomial equation, from which the maximum Doppler spread is readily solved by resorting to the Newtons method. Its performance is demonstrated by simulations.
This paper proposes a novel maximum Doppler spread estimation algorithm for OFDM systems with the comb-type pilot pattern. By tracking the drifting delay subspace of the multipath channel, the time correlation function is measured at a high accuracy,
The analytic expression of CRLB and the maximum likelihood estimator for the sample frequency correlation matrices in doubly selective fading channels for OFDM systems are reported in this paper. According to the analytical and numerical results, the
The analytic expression of CRLB and the maximum likelihood estimator for spatial correlation matrices in time-varying multipath fading channels for MIMO OFDM systems are reported in this paper. The analytical and numerical results reveal that the amo
This paper derives the analytic expression of the sample auto-correlation matrix from the least-squared channel estimation of doubly selective fading channels for OFDM systems. According to the expression, the sample auto-correlation matrix reveals t
Discrete-time Rayleigh fading multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter and receiver. The fading is assumed to be correlated in time and independent from antenna to antenna. Pe