ﻻ يوجد ملخص باللغة العربية
We determine the functional behavior near the discrete rotational symmetry axis of discrete vortices of the nonlinear Schrodinger equation. We show that these solutions present a central phase singularity whose charge is restricted by symmetry arguments. Consequently, we demonstrate that the existence of high-charged discrete vortices is related to the presence of other off-axis phase singularities, whose positions and charges are also restricted by symmetry arguments. To illustrate our theoretical results, we offer two numerical examples of high-charged discrete vortices in photonic crystal fibers showing hexagonal discrete rotational invariance.
We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study t
The problem of stability and spectrum of linear excitations of a soliton (kink) of the dispersive sine-Gordon and $varphi^4$ - equations is solved exactly. It is shown that the total spectrum consists of a discrete set of frequencies of internal mode
We demonstrate a possibility of the creation of stable optical solitons combining one continuous and one discrete coordinate, with embedded vorticity, in an array of planar waveguides with intrinsic cubic-quintic nonlinearity. The same system may be
We examine the evolution of a time-varying perturbation signal pumped into a mono-mode fiber in the anomalous dispersion regime. We analytically establish that the perturbation evolves into a conservative pattern of periodic pulses which structures a
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the sol