ترغب بنشر مسار تعليمي؟ اضغط هنا

Bitemporal Dynamics Sinai Divergence, An Energetic Analog to Boltzmanns Entropy?

69   0   0.0 ( 0 )
 نشر من قبل Ramis Movassagh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sinai chaos is characterized by exponential divergence between neighboring trajectories of a point billiard. If the repulsive potential of the finite-diameter fixed particle in the middle of the table is made smooth, the Sinai divergence persists with finite measure. So it does if the smooth potential is made attractive. So it still does if the potential is in addition made time-dependent (periodic). Then a systematic decrease in energy of the moving particle can be predicted to occur in both time directions for a long time. If so, classical entropy acquires an analog in real space.


قيم البحث

اقرأ أيضاً

A central concept in the connection between physics and information theory is entropy, which represents the amount of information extracted from the system by the observer performing measurements in an experiment. Indeed, Jaynes principle of maximum entropy allows to establish the connection between entropy in statistical mechanics and information entropy. In this sense, the dissipated energy in a classical Hamiltonian process, known as the thermodynamic entropy production, is connected to the relative entropy between the forward and backward probability densities. Recently, it was revealed that energetic inefficiency and model inefficiency, defined as the difference in mutual information that the system state shares with the future and past environmental variables, are equivalent concepts in Markovian processes. As a consequence, the question about a possible connection between model unpredictability and energetic inefficiency in the framework of classical physics emerges. Here, we address this question by connecting the concepts of random behavior of a classical Hamiltonian system, the Kolmogorov-Sinai entropy, with its energetic inefficiency, the dissipated work. This approach allows us to provide meaningful interpretations of information concepts in terms of thermodynamic quantities.
We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic b ehavior of the gas. We compute h_KS/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h_KS/N = a u[-ln{tilde{n}} + b + O(tilde{n})], where u is the single-particle collision frequency and tilde{n} is the reduced number density of the gas. The theoretical values for the coefficients a and b are compared with the results of computer simulations, with excellent agreement for a, and less than satisfactory agreement for b. Possible reasons for this difference in b are discussed.
73 - G.J. Ehnholm , M. Krusius 2020
Temperature scale and the Boltzmann constant: The newest system of units is based on a compatible set of natural constants with fixed values. An example is the Boltzmann constant k which defines the thermal energy content kT. To express the base unit T, the absolute temperature in kelvin, an international agreement for the temperature scale is needed. The scale is defined using fixed points, which are temperatures of various phase transitions. Especially important has been the triple point of water at 273.1600 K. These fixed point temperatures determine the international temperature scale ITS within the Si system. Temperature measurement itself is based on physical laws and on the properties of appropriate thermometric materials selected to determine the temperature scale. For determining the Boltzmann constant, new precision techniques have been developed during the last two decades. Examples are different types of gas thermometry, which ultimately are based on the ideal gas law, and thermal noise of electric charge carriers in conductors. With these means it has become possible to fix the value of the Boltzmann constant with a relative uncertainty of < 1 ppm. As of 2019, the value of k has been agreed to be fixed at 1.380649x10^(-23) J/K. This agreement replaces the earlier definition of a Kelvin degree.
Many modern techniques employed in physics, such a computation of path integrals, rely on random walks on graphs that can be represented as Markov chains. Traditionally, estimates of running times of such sampling algorithms are computed using the nu mber of steps in the chain needed to reach the stationary distribution. This quantity is generally defined as mixing time and is often difficult to compute. In this paper, we suggest an alternative estimate based on the Kolmogorov-Sinai entropy, by establishing a link between the maximization of KSE and the minimization of the mixing time. Since KSE are easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time that could be interesting in computer sciences and statistical physics. Beyond this, our finding will also be of interest to the out-of-equilibrium community, by providing a new rational to select stationary states in out-of-equilibrium physics: it seems reasonable that in a physical system with two simultaneous equiprobable possible dynamics, the final stationary state will be closer to the stationary state corresponding to the fastest dynamics (smallest mixing time).Through the empirical link found in this letter, this state will correspond to a state of maximal Kolmogorov-Sinai entropy. If this is true, this would provide a more satisfying rule for selecting stationary states in complex systems such as climate than the maximization of the entropy production.
Ultrafast chemical reactions are difficult to simulate because they involve entangled, many-body wavefunctions whose computational complexity grows rapidly with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer approximation fu rther complicates the problem by entangling nuclear and electronic degrees of freedom. Here, we show that analog quantum simulators can efficiently simulate molecular dynamics using commonly available bosonic modes to represent molecular vibrations. Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators and with quantum hardware resources that scale linearly with molecular size, and offers significant resource savings compared to digital quantum simulation algorithms. Advantages of our approach include a time resolution orders of magnitude better than ultrafast spectroscopy, the ability to simulate large molecules with limited hardware using a Suzuki-Trotter expansion, and the ability to implement realistic system-bath interactions with only one additional interaction per mode. Our approach can be implemented with current technology; e.g., the conical intersection in pyrazine can be simulated using a single trapped ion. Therefore, we expect our method will enable classically intractable chemical dynamics simulations in the near term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا