ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution in z-direction: The simulation of disc-bulge-halo galaxies using the particle-mesh code SUPERBOX

153   0   0.0 ( 0 )
 نشر من قبل Reinhold Bien Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SUPERBOX is known as a very efficient particle-mesh code with highly-resolving sub-grids. Nevertheless, the height of a typical galactic disc is small compared to the size of the whole system. Consequently, the numerical resolution in z-direction, i.e. vertically with respect to the plane of the disc, remains poor. Here, we present a new version of SUPERBOX that allows for a considerably higher resolution along z. The improved code is applied to investigate disc heating by the infall of a galaxy satellite. We describe the improvement and communicate our results. As an important application we discuss the disruption of a dwarf galaxy within a disc-bulge-halo galaxy that consists of some 10^6 particles.

قيم البحث

اقرأ أيضاً

We used optical images acquired with the UVIS channel of the Wide Field Camera 3 on board of the Hubble Space Telescope to construct the first high-resolution extinction map in the direction of NGC 6440, a globular cluster located in the bulge of our Galaxy. The map has a spatial resolution of 0.5 over a rectangular region of about 160 X 240 around the cluster center, with the long side in the North-West/South-East direction. We found that the absorption clouds show patchy and filamentary sub-structures with extinction variations as large as $delta {rm E}(B-V)sim0.5$ mag. We also performed a first-order proper motion analysis to distinguish cluster members from field interlopers. After the field decontamination and the differential reddening correction, the cluster sequences in the color-magnitude diagram appear much better defined, providing the best optical color-magnitude diagram so far available for this cluster.
We used optical images acquired with the Wide Field Camera of the Advanced Camera for Surveys onboard the Hubble Space Telescope and near-infrared data from GeMS/GSAOI to construct a high-resolution extinction map in the direction of the bulge stella r system Liller 1. In spite of its appearance of a globular cluster, Liller 1 has been recently found to harbor two stellar populations with remarkably different ages, and it is the second complex stellar system with similar properties (after Terzan5) discovered in the bulge, thus defining a new class of objects: the Bulge Fossil Fragments. Because of its location in the inner bulge of the Milky Way, very close to the Galactic plane, Liller 1 is strongly affected by large and variable extinction. The simultaneous study of both the optical and the near-infrared color-magnitude diagrams revealed that the extinction coefficient R$_V$ in the direction of Liller 1 has a much smaller value than commonly assumed for diffuse interstellar medium (R$_V=2.5$, instead of 3.1), in agreement with previous findings along different light paths to the Galactic bulge. The derived differential reddening map has a spatial resolution ranging from $1$ to $3$ over a field of view of about $90$X$90$. We found that the absorption clouds show patchy sub-structures with extinction variations as large as $delta {rm E}(B-V)sim0.9$ mag.
92 - Romain Teyssier 2001
A new N-body and hydrodynamical code, called RAMSES, is presented. It has been designed to study structure formation in the universe with high spatial resolution. The code is based on Adaptive Mesh Refinement (AMR) technique, with a tree based data s tructure allowing recursive grid refinements on a cell-by-cell basis. The N-body solver is very similar to the one developed for the ART code (Kravtsov et al. 97), with minor differences in the exact implementation. The hydrodynamical solver is based on a second-order Godunov method, a modern shock-capturing scheme known to compute accurately the thermal history of the fluid component. The accuracy of the code is carefully estimated using various test cases, from pure gas dynamical tests to cosmological ones. The specific refinement strategy used in cosmological simulations is described, and potential spurious effects associated to shock waves propagation in the resulting AMR grid are discussed and found to be negligible. Results obtained in a large N-body and hydrodynamical simulation of structure formation in a low density LCDM universe are finally reported, with 256^3 particles and 4.1 10^7 cells in the AMR grid, reaching a formal resolution of 8192^3. A convergence analysis of different quantities, such as dark matter density power spectrum, gas pressure power spectrum and individual haloes temperature profiles, shows that numerical results are converging down to the actual resolution limit of the code, and are well reproduced by recent analytical predictions in the framework of the halo model.
We introduce the moving mesh code Shadowfax, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written i n C++ and its source code is made available to the scientific community under the GNU Affero General Public License. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare Shadowfax with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.
We examine the properties and evolution of a simulated polar disc galaxy. This galaxy is comprised of two orthogonal discs, one of which contains old stars (old stellar disc), and the other, containing both younger stars and the cold gas (polar disc) of the galaxy. By exploring the shape of the inner region of the dark matter halo, we are able to confirm that the halo shape is a oblate ellipsoid flattened in the direction of the polar disc. We also note that there is a twist in the shape profile, where the innermost 3 kpc of the halo flattens in the direction perpendicular to the old disc, and then aligns with the polar disc out until the virial radius. This result is then compared to the halo shape inferred from the circular velocities of the two discs. We also use the temporal information of the simulation to track the systems evolution, and identify the processes which give rise to this unusual galaxy type. We confirm the proposal that the polar disc galaxy is the result of the last major merger, where the angular moment of the interaction is orthogonal to the angle of the infalling gas. This merger is followed by the resumption of coherent gas infall. We emphasise that the disc is rapidly restored after the major merger and that after this event the galaxy begins to tilt. A significant proportion of the infalling gas comes from filaments. This infalling gas from the filament gives the gas its angular momentum, and, in the case of the polar disc galaxy, the direction of the gas filament does not change before or after the last major merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا