ﻻ يوجد ملخص باللغة العربية
We examine the properties and evolution of a simulated polar disc galaxy. This galaxy is comprised of two orthogonal discs, one of which contains old stars (old stellar disc), and the other, containing both younger stars and the cold gas (polar disc) of the galaxy. By exploring the shape of the inner region of the dark matter halo, we are able to confirm that the halo shape is a oblate ellipsoid flattened in the direction of the polar disc. We also note that there is a twist in the shape profile, where the innermost 3 kpc of the halo flattens in the direction perpendicular to the old disc, and then aligns with the polar disc out until the virial radius. This result is then compared to the halo shape inferred from the circular velocities of the two discs. We also use the temporal information of the simulation to track the systems evolution, and identify the processes which give rise to this unusual galaxy type. We confirm the proposal that the polar disc galaxy is the result of the last major merger, where the angular moment of the interaction is orthogonal to the angle of the infalling gas. This merger is followed by the resumption of coherent gas infall. We emphasise that the disc is rapidly restored after the major merger and that after this event the galaxy begins to tilt. A significant proportion of the infalling gas comes from filaments. This infalling gas from the filament gives the gas its angular momentum, and, in the case of the polar disc galaxy, the direction of the gas filament does not change before or after the last major merger.
We present a modified version of the L-GALAXIES 2020 semi-analytic model of galaxy evolution, which includes significantly increased direct metal enrichment of the circumgalactic medium (CGM) by supernovae (SNe). These more metal-rich outflows do not
Minor accretion events with mass ratio M_sat : M_host ~ 1:10 are common in the context of LCDM cosmology. We use high-resolution simulations of Galaxy-analogue systems to show that these mergers can dynamically eject disk stars into a diffuse light c
We study the evolution of disc galaxies in group environments under the effect of both the global tidal field and close-encounters between galaxies, using controlled N-body simulations of isolated mergers. We find that close-range encounters between
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamica
Galaxy scaling laws, such as the Tully-Fisher, mass-size and Fall relations, can provide extremely useful clues on our understanding of galaxy formation in a cosmological context. Some of these relations are extremely tight and well described by one